
Telescope – Integration Broker SDK Manual

 User’s Guide

Copyright © 2019 North Plains LLC (USA) and North Plains Systems Corp. (Canada), known as
“Northplains”. All rights reserved.

North Plains, Telescope, Telescope OnDemand, I-Piece and all associated logos are trademarks or
registered trademarks of Northplains. All other third-party product and company names
mentioned in this document may be trademarks or registered trademarks of their respective
owners.

The contents of this guide are for informational purposes only and are subject to change without
notice. Northplains assumes no responsibility for any errors or omissions within this document.
The material presented herein should not be construed as a commitment or warranty and it may
not be copied or reproduced in any form, electronic or otherwise, without the express written
consent of Northplains.

The software (including firmware) addressed in this guide is provided to the US Government
under agreement that grants the government the minimum “restricted rights” in the software, as
defined in the Federal Acquisition Regulation (FAR) or the Defense Federal Acquisition
Regulation Supplement (DFARS), whichever is applicable.

If the software is procured for use by the US Department of Defense, the following legend
applies. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

If the software is procured for use by any US Government entity other than the Department of
Defense, the following notice applies. Notwithstanding any other lease or license agreement that
may pertain to, or accompany the delivery of, this computer software, the rights of the
Government regarding its use, reproduction, and disclosure are as set forth in FAR 52.227-19(C).

Unpublished rights reserved under the copyright laws of the United States.

Information and software in this document are proprietary to Northplains, its Distributors, or its
Suppliers. No portion of this document may be copied, reproduced, disclosed to others, published,
or used, in whole or in part, for any purpose other than that for which it is being made available.
Use of software described in this document is subject to the terms and conditions of the North
Plains Systems Software License Agreement. Third-party software license acknowledgments also
apply, as listed in the Telescope Installation and Configuration Guide.

This document is for information purposes only and is subject to change without notice.

Northplains http://www.northplains.com/contact/ help@northplains.com

Version 9.4.0.17 (February, 2019)

http://www.northplains.com/contact/
help@northplains.com

Contents

1 Integration Broker SDK 5

1.1 Introduction ... 6

1.1.1 Why SOAP?.. 6

1.2 Components of SOAP Integration... 7

1.2.1 Web Services... 7

1.2.2 SOAP Messages.. 7

1.2.3 RPC-Style Messages.. 8

1.2.4 Elements of a SOAP Message ... 8

1.2.5 Attributes of a SOAP Message .. 9

1.2.6 The SOAP Engine... 9

2 Deploying the Integration Broker 11

2.1 Integration Broker Support in Telescope... 12

2.2 SDK Support Files... 13

2.3 Sample Client Applications.. 14

2.3.1 Simple Command Line Java Application .. 14

2.3.2 Simple C# Application... 14

2.4 Working WIth Functional Rules... 15

2.5 Accessing Telescope .. 16

2.5.1 Passing the Site Parameter When Accessing Telescope............................... 16

2.5.2 Calling the Integration Broker ... 16

2.5.3 Functional Rules and the Integration Broker... 16

3 Telescope Hub SOAP API 17

3.1 SOAP API Methods Overview... 18

4 Asset Maintenance Methods 21

4.1 CheckOut .. 22

4.2 CheckOutStatus .. 24

4.3 CancelCheckOut ... 25

4.4 Checkin ... 26

4.5 CheckinWithData .. 28

4.6 Delete.. 30

4.7 SetThumbnailByCode ... 31

4.8 AttachRendition... 32

4.9 PopulatePopupValues... 34

5 Download Methods 37
Contents 1

5.1 Overview ... 38

5.1.1 Example .. 38

5.2 Getfile .. 39

5.3 Download .. 40

5.4 DownloadStart... 42

5.5 DownloadStatus .. 44

5.6 DownloadAged.. 45

5.7 DownloadAgedStart .. 47

5.8 DownloadStatus .. 49

5.9 DownloadPageURL... 50

6 API Methods: Catalogs 51

6.1 AddToCatalog ... 52

6.2 CreateCatalog ... 53

6.3 EnumerateCatalogs .. 54

6.4 DeleteCatalog ... 55

6.5 GetCatalogAssets ... 56

6.6 GetCatalogProperties.. 57

6.7 RemoveFromCatalog .. 58

6.8 SetCatalogProperties .. 59

7 API Methods: Ingestion 61

7.1 Overview ... 62

7.2 Ingest .. 63

7.3 GetIngestStatus .. 64

7.4 GetTemplateNames .. 65

7.5 IngestWithTemplate .. 66

7.6 IngestWithData.. 67

7.7 IngestWithTemplateAndData .. 68

7.8 IngestWithStatus ... 69

7.9 IngestWithDataAndStatus ... 70

7.10 GetIngestWithDataStatus.. 71

8 Login/Out and Session Maintenance 73

8.1 Overview ... 74

8.2 Login ... 75

8.3 LoginWithProvider ... 76

8.3.1 Performing Authentication... 76

8.4 EnumerateConnections... 78

8.5 Greeting .. 79

8.6 IsValidSession... 80
Integration Broker SDK Manual 2

8.7 Logout ... 81

9 API Methods: Metadata Methods 83

9.1 EnumerateFields ... 84

9.2 GetData... 86

9.3 GetDataMultiple .. 87

9.4 SetData ... 88

9.5 SetDataMultiple... 89

10 API Methods: Messaging Methods 91

10.1 DeleteMBMessage.. 92

10.2 GetMBMessageAction .. 93

10.3 GetMBMessageCount ... 94

10.4 GetMBMessageList ... 95

10.5 GetMBVisibleActions... 96

10.6 ReadMBMessage.. 97

10.7 SendMessage ... 98

10.8 SendMBMessage.. 99

10.9 SendMBApprovalMessage.. 100

11 Search Methods 101

11.1 Search... 102

11.2 Example of Constructing a Query in NPSMap Form... 103

11.3 GetTBCriteriaValues ... 104

11.4 GetTBLevelData.. 105

11.5 GetTBSearchNames ... 106

12 User Maintenance 107

12.1 EnumerateGroups... 108

12.2 EnumerateUsers ... 109

12.3 IsValidUser.. 110

12.4 CreateUser.. 111

12.5 DeleteUser .. 112

12.6 UpdateUserPassword ... 113

13 Version Control Methods 115

13.1 CreateDerivativeFromVersion... 116

13.2 DeleteVersion.. 117

13.3 DownloadVersion .. 118

13.4 DownloadVersionStart .. 119
Contents 3

13.5 DownloadVersionStatus.. 120

13.6 GetAssetVersions ... 121

13.7 PromoteVersion .. 122

14 UI Service 123

14.1 Overview ... 124

14.2 UI Service Actions... 125

14.2.1 Home Page... 125

14.2.2 Browse and Select Files ... 125

14.2.3 Search and Return Result Set .. 125

14.2.4 Return Thumbnail ... 126

14.2.5 Return Rendering.. 126

14.2.6 Display One Asset .. 126

14.2.7 Display Multiple Assets ... 127

14.2.8 Search Action.. 128

14.2.9 File Drop Applet .. 128

14.2.10Display Assets on Home Page ... 128

14.2.11Display Asset Creation Screen ... 128

14.2.12Display Asset Search Results... 129

14.2.13Display Catalog... 129

15 Reference 131

15.1 Exception Handling ... 132

15.2 SOAP Error Codes.. 133

15.2.1 User Errors.. 133

15.2.2 Database Errors.. 135

15.2.3 Validation Errors ... 135

15.2.4 System Errors ... 138

15.2.5 Broker Errors... 138

15.2.6 General Errors .. 140

15.2.7 Ingest Process Status Messages.. 140

15.2.8 Unexpected Errors .. 140
Integration Broker SDK Manual 4

Chapter 1: Integration Broker SDK

This section provides an introduction to the Integration Broker and the Web services, SOAP messages, and the SOAP
engine components needed to convey data to and from Telescope.web in a distributed environment.

In this Section:

 Section 1.1, "Introduction," on page 6

 Section 1.2, "Components of SOAP Integration," on page 7
Integration Broker SDK Manual 5

1.1 Introduction
The Telescope Hub Integration Broker SDK is a functional API into the Telescope application. It is based on Web
Services (SOAP) and provides full access to Telescope functionality.

This guide explains how to use the SOAP API and User Interface Service to integrate Telescope.web with other
applications. It also explains how to deploy the sample client application and details the application's design. This
guide assumes that you have a working knowledge of service-oriented architecture, Java™ or C++, and Simple
Object Access Protocol (SOAP).

The APIs described in this document are broken down into major functional groups, based on the types of services
they offer. This classification was made for convenience and readability only, and does not represent any physical
breakdown of the API.

1.1.1 Why SOAP?
Simple Object Access Protocol is an XML-based model for accessing remote objects over a network. SOAP offers
the following advantages:

 API-level access to Telescope functionality

 Authenticated and session-based (login/logout calls)

 Scalable (multiple instances)

About the User Interface Service

The UI Service makes it possible for external web-based applications to integrate with Telescope using a URL-based
interface and a web browser on the client machine. The UI Service offers the following advantages:

 URL access to Telescope.web interface components

 Associated with the same session obtained from the SOAP Service (thus, authenticated)
6 Integration Broker SDK

1.2 Components of SOAP Integration
This topic deals with Web services, SOAP messages, and the SOAP engine. These components are needed to convey
data to and from Telescope.web in a distributed environment.

1.2.1 Web Services
Web services can be thought of as distributed applications. They provide an implementation-independent way for
applications to communicate with each other. Instead of creating an instance of a class and invoking its methods, a
Web service consumer locates a Web service and invokes the operations it provides. The Web service provider (the
application implementing the Web service) can be on the same Java virtual machine as the consumer using it or it can
be thousands of miles away.

1.2.2 SOAP Messages
A SOAP message, represented by the Envelope element, contains a mandatory Body element and an optional Header
element. The Body element can contain any number of body entries. The optional Fault element is present only in
messages that report a processing exception. The structure of a SOAP message looks like this:

A SOAP message, represented by the Envelope element, contains a mandatory Body element and an optional Header
element.

The Body element can contain any number of body entries. The optional Fault element is present only in messages
that report a processing exception.
Integration Broker SDK Manual 7

1.2.3 RPC-Style Messages
Telescope Integration Broker supports Remote Procedure Call (RPC) messaging, rather than document-style
messaging. RPC messaging provides a standard way of representing method invocations in SOAP messages. Here's
an example of an RPC SOAP message:

<soapenv:Envelope

xmlns:soapenv="soap_ns"

xmlns:xsd="xml_schema_ns"

xmlns:xsi="type_ns">

<soapenv:Body>

<ns1:getStockPrice

xmlns:ns1="app_ns"

soapenv:encodingStyle="encoding_ns">

<stockSymbol xsi:type="xsd:string">AAPL</stockSymbol>

</ns1:getStockPrice>

</soapenv:Body>

1.2.4 Elements of a SOAP Message
The following table shows the elements of a SOAP message, its parent elements (if any), its uses, and its description:

Element Parent Use Descrption

Envelope None Use only once Encloses the message.

Header Envelope Optional Encloses header entries.

Header Entries Header Can be used more
than once

Provide additional information about the message's content,
for example, digital signatures, authorization data, and so on.

Body Envelope Use only once Encloses the message's body entries.

Body Entries Body Can be used more
than once

Make up the content of the message. Their element names
depend on the message's content.

Fault Body Optional Reports a problem. When used, no other body entry can be
present.

Faultcode Fault Use only once Indicates the reason for the fault. Intended for application
use.

Faultstring Fault Use only once Provides a human-readable version of the fault description.

Faultactor Fault Optional Indicates which entity along the message path raised the
fault.
8 Integration Broker SDK

1.2.5 Attributes of a SOAP Message
All of the attributes that the SOAP envelope schema defines are global (they are not associated with a particular
element). Also, each element in a SOAP message is free to use any attribute, regardless of where it is defined, either
in SOAP's schema or another schema. This is one of SOAP's extensibility features because elements are free to use
any number of attributes. The following table describes the attributes that the SOAP specification defines.

1.2.6 The SOAP Engine
A SOAP engine (or processor) helps both consumers of Web services and their providers accomplish tasks without
having to know the intricacies of SOAP message handling. As far as the consumer is concerned, it invokes an
operation in a way similar to how a remote procedure call is invoked. The Web service provider needs to implement
only the logic required by the business problem it solves.

The consumer's SOAP processor converts the method invocation into a SOAP message. This message is transmitted
through a transport, such as HTTP or SMTP, to the service provider's SOAP processor, which parses the message into
a method invocation. The provider then executes the appropriate logic and gives the result to its SOAP processor,
which parses the information into a SOAP response message. The message is transmitted through a transport to the
consumer. Its SOAP processor parses the response message into a result object that it returns to the invoking entity.

The Apache Axis SOAP engine provides and consumes Web services. Axis is the third generation of Apache SOAP
(an implementation of SOAP from the Apache Software Foundation). Axis is a SOAP engine as well as a code
generator and WSDL processing tool. It provides a framework for constructing SOAP processors such as clients,
servers, gateways, and so on, which are integrated into the existing application so that message handling, invoking the
service, and generating responses are performed using the Axis engine.

Detail Fault Optional Encloses detail entries.

Detail Entries Detail Can be used more
than once

Contain application-specific information about the fault.

Attribute Value Description

Actor URI Specifies the entity that is to process the element. When absent, the
actor is the ultimate recipient of the message. This attribute is used
mainly to assign header entries to specific entities.

mustUnderstand 0 or 1 Indicates whether the element's actor must process the element.
When set to 1 and if the actor is unable to process the element, the
actor must respond with a fault.

encodingStyle List of URIs Indicates the encoding style used for the element’s content.

Element Parent Use Descrption
Integration Broker SDK Manual 9

10 Integration Broker SDK

Chapter 2: Deploying the Integration
Broker

In this Section:

 Section 2.1, "Integration Broker Support in Telescope," on page 12

 Section 2.2, "SDK Support Files," on page 13

 Section 2.3, "Sample Client Applications," on page 14

 Section 2.4, "Working WIth Functional Rules," on page 15

 Section 2.5, "Accessing Telescope," on page 16
Integration Broker SDK Manual 11

2.1 Integration Broker Support in Telescope
You should specify the Default Group for creating multiple users in the SOAPParams.plist file (by default, this file is
located in ...\tsweb.woa\Contents\Resources). In this file, a key called TEMPLATE_GROUP defines the default
group that a new user is placed in if the in_strGroupName parameter is not passed with the SOAP API CreateUser()
method. The default value for this setting is Default, which causes all new users to be created as members of the
Default group.

You might want to use the support files and programming resources provided with the Integration Broker SDK as you
develop an application that will interface with Telescope.
12 Deploying the Integration Broker

2.2 SDK Support Files
The WSDL files in the "programming resources" folder describe the Telescope.web services in a service-specific
language. These files can be used with the WSDL2Java utility (available from apache.org) to generate Java stubs. The
stubs can then be used to connect to the Integration Broker from a third-party application.

Also included in this folder are Javadocs that describe the main Integration Broker service methods and the North
Plains Systems internal data types.

The sample client applications are also a valuable resource for understanding the Integration Broker SDK and how to
use it.
Integration Broker SDK Manual 13

2.3 Sample Client Applications
Two sample client applications are provided to demonstrate and test the SOAP and UI Services provided by
Telescope.

The following diagram shows the typical deployment architecture for a client application using the SOAP API
provided by Telescope:

2.3.1 Simple Command Line Java Application
The Sample_Client folder provided with the Integration Broker ZIP file contains a simple command line application
that demonstrates some of the Integration Broker SDK methods in action. To run the application, copy the files in the
Sample_Client\executables folder to a location on the local machine and run the run.bat file.

2.3.2 Simple C# Application
The IB2REVISED\samples\DemoApp folder created when you extracted the Integration Broker ZIP file contains a
simple C# application with a basic graphical user interface that demonstrates some of the Integration Broker SDK
methods in action. To run the application, run the WindowsApplication1.exe file in the DemoApp folder.
14 Deploying the Integration Broker

2.4 Working WIth Functional Rules
For calls in the Integration Broker API that execute functional rules, if the user's rules return a challenge form, this is
treated as a failure, with the error message: "Challenge forms are not supported in functional rules using the SOAP
API".

Functional rules are executed for each asset handled by the call, and a functional rule execution failure will result in
an error string being added to the array of error strings for return to the caller, but will not raise an exception.
Integration Broker SDK Manual 15

2.5 Accessing Telescope
Since Telescope can define multiple customized "sites", the ability to pass the name of the site when connecting to
Telescope is crucial. To pass the site name, include it in the SOAP Login endpoint URL when making the initial login
call to the Integration Broker as indicated below. The site name is stored in the session that is created via the Login()
method so all UI elements from Telescope accessed via the Integration Broker will reflect the site name that was
passed in. If the site parameter is absent, or an invalid site name is passed, the default site is assumed, as dictated by
the standard behavior of Telescope.

2.5.1 Passing the Site Parameter When Accessing Telescope
To pass the site parameter, modify the endpoint URL used to access the Integration Broker, as demonstrated by the
examples below.

Without site parameter:

http://www.hostserver.com/scripts/WebObjects.dll/tsweb.woa/wa/services/Login

With site parameter:

http://www.hostserver.com/scripts/WebObjects.dll/tsweb.woa/wa/services/Login?site=ABC123

2.5.2 Calling the Integration Broker
Keep the following points in mind when calling the Integration Broker:

The first call must always be the SOAP Login call; this call returns two URLs: a new SOAP endpoint URL, and a
URL for accessing the UI Service.

The session ID is automatically embedded in the URLs by the Integration Broker.

All subsequent SOAP and UI service calls must use these endpoint URLs.

The Logout call terminates the session.

The session is maintained on the server side and expires after a period of time if no further calls are made; the
greeting call can be used periodically to keep the session alive if necessary.

2.5.3 Functional Rules and the Integration Broker
Once logged in, interacting with Telescope.web using the Integration Broker is identical to working in the application
directly. Any functional rules configured for the user you are logged in as will run when you perform the action that
triggers them. However, functional rules that use challenge forms or approvals are not supported with the Integration
Broker. Calls that trigger such functional rules will return an error.
16 Deploying the Integration Broker

Chapter 3: Telescope Hub SOAP API

This section provides information about the Telescope SOAP API.

In this Section:

 Section 3.1, "SOAP API Methods Overview," on page 18
Integration Broker SDK Manual 17

3.1 SOAP API Methods Overview
The chart below lists the classes and methods supported by the SOAP API. The Login method must be used first in
any session because it provides a starting point for other SOAP services.

Class:Login

This class provides the SOAP API used as a starting point to log in to the TSWeb domain to use other TSWeb SOAP
Services.

Class: TSWebService

This Java class provides the SOAP API for interface between SOAP clients and the TSWeb domain.

Method Description

EnumerateConnections Returns the database connection(s) as defined in the 'site.plist' file.

Login Validates the user's identifier and password in the specified database. This is the first method
that must be called in each session.

LoginWithProvider This method must be called before any other method. It validates the user against the
specified data source, using an authentication provider class.

Method Description

AddToCatalog Adds one or more assets to a cataog.

CancelCheckout Cancels the check out action performed on an asset.

Checkin Checks in a single file.

CheckinWithData Checks in a single file with data. The actual file must passed as DIME attachment.

Checkout Checks out an asset.

CheckOutStatus Checks the value of the editorial.status column for the asset.

ConvertMimix2Onix Converts the provided MIMiX XML to ONIX using the supplied XLST file. If no XSLT file is
indicated, the default file is used

CreateCatalog Creates a new empty catalog.

CreateDerivativeFromVersion Creates a derivative of the current version.

CreateUser Creates a new user with the specified user ID and password.

Delete Deletes an asset, first making sure that the user is allowed to delete assets.

DeleteCatalog Deletes a catalog. The logged-in user must either be the owner of the catalog or an
administrator who has visibility permission for the catalog owner's group.

DeleteMBMessage Deletes one or more messages.

DeleteUser Deletes the Telescope user.
18 Telescope Hub SOAP API

DeleteVersion Deletes the indicated version.

Download Downloads one or more assets, executing functional rules if required.

DownloadAged Downloads a version of one or more files prior to a given date.

DownloadAgedStart Downloads one or more files asynchronously, attempting to retrieve a version that was
checked in prior to a given date.

DownloadAgedStatus Returns the aged values of the downloading version.

DownloadPageURL Returns URL of Download Manager page for downloading selected assets.

DownloadStart Downloads one or more files asynchronously.

DownloadStatus Returns the asset's download status.

DownloadVersion Downloads a specific version of an asset.

DownloadVersionStart Downloads a specific version of one or more assets asynchronously.

DownloadVersionStatus Returns the asset version's download status.

EnumerateCatalogs Returns the catalogs nested in the given catalog structure.

EnumerateFields Returns a list of the metadata fields visible to the logged-in user.

EnumerateGroups Returns a list of the user groups visible to the logged in user.

EnumerateUsers Returns a list of the users visible to the logged in user.

GetAssetVersions Returns a list of versions for the given asset.

GetCatalogAssets Returns a list of assets in the given catalog; only assets visible to the logged-in user are
returned.

GetCatalogProperties Returns the properties information for the given catalog.

GetData Returns the value of a metadata field.

GetDataMultiple Returns the values of one or more metadata fields for one or more assets.

GetFile Returns a link to a file so that it can be downloaded. Indicates if the file should be zipped on
download.

GetIngestStatus Queries ingest status associated with a unique request/process ID.

GetMBMessageAction Called when the recipient clicks on one of the message action buttons attached to a 'To Do'
message.

GetMBMessageCount Returns the number of messages in the system for the logged-in user from the given cut-off
date.

GetMBMessageList Returns the message IDs and header information for the messages in the given category for
the logged-in user.

Method Description
Integration Broker SDK Manual 19

GetMBVisibleActions Returns the message actions (from the M_ACTIONS table) that are visible to the calling user.

GetOnixDataMultiple Generates an XML string in ONIX format from the data in the given fields.

GetTBCriteriaValues Collects array values of the tree model for the current user from the Tree Broker.

GetTBLevelData Returns the data for a given tree search from the TreeSearch Broker.

GetTBSearchNames

GetTemplateNames Returns all of the names of the templates currently saved in the database.

greeting Returns a welcome message and resets the session timeout. Used to 'heartbeat' the
application so that the session does not expire.

Ingest Uploads the specified files, fills in metadata fields, saves the assets, and returns a list of
record IDs of the uploaded files.

IngestWithData Passes the binary data for an ingested file.

IngestWithStatus Ingests multiple assets into the Telescope database asynchronously.

IngestWithTemplate Uploads the specified files, fills in metadata fields from the specified template, saves the
assets, and returns a list of record IDs.

IngestWithTemplateAndData Passes the binary data for the ingested file with its template.

InvalidSession Handles an invalid SOAP session.

IsValidSession Checks whether a given sessionId is valid.

IsValidUser Performs a search for a user in the database.

Logout Terminates the user's session and cleans up temporary files.

PromoteVersion Promotes the given version of an asset.

ReadMBMessage Returns the full information from a given message.

RemoveFromCatalog Removes one or more assets from a catalog.

Search Validates the criteria list, executes the search, and returns the search results as an array of
record IDs.

SendMBApprovalMessage Sends a Telescope 'approval' message.

SendMBMessage Sends a Telescope message.

SendMessage Sends a Telescope message to the specified user with the subject and body provided.

SetCatalogProperties Sets the given catalog's properties.

SetData Sets one of an asset's metadata fields to a specified value.

SetDataMultiple Sets the data for one or more assets.

UpdateUserPassword Replaces the password of the specified user.

Method Description
20 Telescope Hub SOAP API

Chapter 4: Asset Maintenance Methods

The asset maintenance methods include methods for checking out, checking in, and deleting assets from the
Telescope.web database.

In this Section:

 Section 4.1, "CheckOut," on page 22

 Section 4.2, "CheckOutStatus," on page 24

 Section 4.3, "CancelCheckOut," on page 25

 Section 4.4, "Checkin," on page 26

 Section 4.5, "CheckinWithData," on page 28

 Section 4.6, "Delete," on page 30

 Section 4.7, "SetThumbnailByCode," on page 31

 Section 4.8, "AttachRendition," on page 32

 Section 4.9, "PopulatePopupValues," on page 34
Integration Broker SDK Manual 21

4.1 CheckOut

This call adds a lock to the given file, preventing other users from checking it out. The file is not actually copied,
simply locked. The Download method can be used to obtain a copy of the file after it has been locked. It is not
necessary to lock a file before downloading, but this is recommended if the file is modified before being returned to
Telescope.

Before checking out the file, this method validates the privileges for the current user, and if they are sufficient,
proceeds with checkout. If the current user doesn't have enough privileges to proceed with checkout for the given
record ID and rendition ID, this method throws an exception.

Parameters:

 in_numRecordId – The record ID of the file to be checked out.

 in_numRenditionId – The rendition ID of the file to be checked out.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

Soap UI example call:

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:impl="http://com/northplains/web/tsweb/soap/impl">
 <soapenv:Header/>
 <soapenv:Body>
 <impl:CheckOut soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <in_numRecordId xsi:type="soapenc:int" xmlns:soapenc="http://schemas.xmlsoap.org/soap/
encoding/">34327</in_numRecordId>
 <in_numRenditionId xsi:type="soapenc:int" xmlns:soapenc="http://schemas.xmlsoap.org/soap/
encoding/">1</in_numRenditionId>
 </impl:CheckOut>
 </soapenv:Body>
</soapenv:Envelope>

Result:

200 - Asset should be checked out, verify on TSWeb UI

Example Code Call:

The following example code call uses the SOAP example call above.

TSWebServiceService service = new TSWebServiceServiceLocator();
service.createCall();
TSWebService telescopeService = service.getsoapservice(new java.net.URL(strEndPoint));

public void CheckOut (Integer in numRecordId,

Integer in numRenditionId)

throws Throwable
22 Asset Maintenance Methods

telescopeService.checkOut(recordId, rendId);
Integration Broker SDK Manual 23

4.2 CheckOutStatus

This method gets the checkout status of the asset.

Parameters:

 in_numRecordId – The record ID of the asset.

Returns:

An NPSMap object that contains the status of the asset being checked out. If an asset is not checked out this method
returns an NPSMap with a single key ISCHECKOUT and a Boolean object for it indicating the status.

If an asset is checked out this method returns an NPSMap with the following keys containing the values found in the
CHECKOUTS table for the given record ID:

 ISCHECKOUT

 USER_NAME

 CHKOUTDATE

 RENDITIONS

If the asset is checked out but some of the values (or records in the checkouts table) are missing the NPSMap object
will have null values for the keys for which the value wasn't found in the database. The value for the key
RENDITIONS is a type of java.util.ArrayList that contains all checked out renditions (as java.lang.Number objects)
found in the checkouts table. The value for the key CHKOUTDATE is a type of java.lang.String in the format yyyy/
MM/dd HH:mm:ss.

NOTE: When accessing any value in the NPSMap, except for the key ISCHECKOUT, the returned result should be
checked for null as this method can return some values as null for the keys declared above.

NOTE: This method neither validates visibility of the user name that checked out the asset, nor the visibility of the
rendition IDs returned in the NPSMap against the current user name. However, the visibility validation of the asset
for the current user is performed.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public NPSMap CheckOutStatus (Integer in numRecordId,)

throws Throwable
24 Asset Maintenance Methods

4.3 CancelCheckOut

This call removes the lock from a record which had previously been checked out.

This method first validates the current user privileges, and if they are sufficient, removes all entries in the
CHECKOUTS table and changes the status of the record in the EDITORIAL table to null.

If the current user doesn't have enough privileges to cancel the checkout, this method throws an exception.

Parameters:

 in_numRecordId – The record ID of the asset whose checkout state should be changed.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public void CancelCheckOut (Integer in numRecordId,)

throws Throwable
Integration Broker SDK Manual 25

4.4 Checkin

This method performs a check-in process for a single file. The file resides on a server accessible over the Web, and its
URL is included so that it can be found and uploaded.

Note:

 This method is overloaded with a deprecated method with the same name (but a different parameter set) that
was used before version 9.4.0.11. If the deprecated parameter signature is detected, the checkin will not be
completed; instead, a message will be shown to indicate a deprecated method is being used.

Parameters:

 in_iRecordId – Record ID of the asset to check in.

 in_iRendId – Rendition ID. The rendition ID must be visible to the user's group and a record in the doc_ren-
ditions table must be present.

 in_strUri - String URL. A URL defining a link to the asset’s location where it can be fetched. The file at this
link is uploaded. Its name at the original location is used.

 in_bIsMac – True if the file is in the Mac bin format.

 in_strVersionName – A name for the version. This value cannot be null and must not exceed 16 characters in
length.

 in_strVersionDesc – (Optional) A version description; if specified, it must not exceed 255 characters in
length

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

Sample SOAP UI Call:

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:impl="http://com/northplains/web/tsweb/soap/impl">
 <soapenv:Header/>
 <soapenv:Body>
 <impl:Checkin soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

public void Checkin ((int in_iRecordId,

int in_iRendId,

String in_strUri,

boolean in_bIsMac,

String in_strVersionName,

String in_strVersionDesc)

throws Throwable
26 Asset Maintenance Methods

 <in_iRecordId xsi:type="xsd:int">34327</in_iRecordId>
 <in_iRendId xsi:type="xsd:int">1</in_iRendId>
 <in_strUri xsi:type="soapenc:string" xmlns:soapenc="http://schemas.xmlsoap.org/soap/
 encoding/">http://some/path/to/file.jpg</in_strUri>
 <in_bIsMac xsi:type="xsd:boolean">false</in_bIsMac>
 <in_strVersionName xsi:type="soapenc:string" xmlns:soapenc="http://schemas.xmlsoap.org/
 soap/encoding/">1.0</in_strVersionName>
 <in_strVersionDesc xsi:type="soapenc:string" xmlns:soapenc="http://schemas.xmlsoap.org/
 soap/encoding/">version change from soap call</in_strVersionDesc>
 </impl:Checkin>
 </soapenv:Body>
</soapenv:Envelope>

Result:

200 - Asset should be checked in, verify on TSWeb UI

Example Code Call:

The following example code call uses the SOAP example call above.

(The first three lines only need to be done once per session.)

TSWebServiceService service = new TSWebServiceServiceLocator();
service.createCall();
TSWebService telescopeService = service.getsoapservice(new java.net.URL(strEndPoint));
telescopeService.checkin(intRecordId, intRendId, strFileURL, bIsMac, strVersionName,
 strVersionDescription);
Integration Broker SDK Manual 27

4.5 CheckinWithData

This method performs a check-in process for a single attached file. The file has to be passed as DIME attachment. For
more information about passing binary data, see Section 7.1, "API Methods: Ingestion," on page 61.

Notes:

 This method is not recommended, because DIME attachments may have performance issues, especially for
large files where some applications (specifically those written in C#) do not use connection timeouts. It is
recommended that you use the Checkin method instead (with a URL to an asset in a network-accessible
location).

 This method is overloaded with a deprecated method with the same name (but a different parameter set) that
was used before version 9.4.0.11. If the deprecated parameter signature is detected, the checkin will not be
completed; instead, a message will be shown to indicate a deprecated method is being used.

Parameters:

 in_iRecordId – Record ID of the asset to check in.

 in_iRendId – Rendition ID. The rendition ID must be visible to the user's group and a record in the doc_ren-
ditions table must be present.

 in_strFileName – The file name, used as a file name when InputStream data is saved.

 in_bIsMac – True if the file is in the Mac binary format.

 in_strVersionName – A name for the version. This value cannot be null and must not exceed 16 characters in
length.

 in_strVersionDesc – (Optional) A version description; if specified, it must not exceed 255 characters in
length

Throws

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public void CheckinWithData (int in_iRecordId,

int in_iRendId,

String in_strFileName,

boolean in_bIsMac,

String in_strVersionName,

String in_strVersionDesc

throws Throwable
28 Asset Maintenance Methods

Sample SOAP UI call:

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:impl="http://com/northplains/web/tsweb/soap/impl">
 <soapenv:Header/>
 <soapenv:Body>
 <impl:CheckinWithData soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <in_iRecordId xsi:type="xsd:int">4623</in_iRecordId>
 <in_iRendId xsi:type="xsd:int">3</in_iRendId>
 <in_strFileName xsi:type="soapenc:string" xmlns:soapenc="http://schemas.xmlsoap.org/soap/
 encoding/">movie.mp4</in_strFileName>
 <in_bIsMac xsi:type="xsd:boolean">false</in_bIsMac>
 <in_strVersionName xsi:type="soapenc:string" xmlns:soapenc="http://schemas.xmlsoap.org/
 soap/encoding/">s</in_strVersionName>
 <in_strVersionDesc xsi:type="soapenc:string" xmlns:soapenc="http://schemas.xmlsoap.org/
 soap/encoding/">0</in_strVersionDesc>
 </impl:CheckinWithData>
 </soapenv:Body>
</soapenv:Envelope>

Result:

200 - Asset should be checked in, verify on TSWeb UI

Example Code Call:

The following example code call uses the SOAP example call above.

TSWebServiceService service = new TSWebServiceServiceLocator();
service.createCall();
TSWebService telescopeService = service.getsoapservice(new java.net.URL(strEndPoint));
File attachedFile = new File(in_strFileName);
org.apache.axis.client.Stub telescopeStub = (org.apache.axis.client.Stub)telescopeService;
telescopeStub._setProperty(org.apache.axis.client.Call.ATTACHMENT_ENCAPSULATION_FORMAT,
 org.apache.axis.client.Call.ATTACHMENT_ENCAPSULATION_FORMAT_DIME);
String strFileName = attachedFile.getName();
DataHandler attachedFileDH = new DataHandler(new FileDataSource(attachedFile));
telescopeStub.addAttachment(attachedFileDH);
telescopeStub.setTimeout(12000);
iReturnValue = telescopeService.checkinWithData(intRecordId, intRendId, strFileName, bIsMac,
 strVersionName, strVersionDesc);
Integration Broker SDK Manual 29

4.6 Delete

This method deletes the asset represented by the given record ID. If the current user doesn't have enough privileges to
delete the asset, this method throws an exception. This method also deletes the original files if the parameter
in_bDeleteOriginalFile is included and set to true.

Parameters

 in_numRecordId – The record ID of the asset to be deleted. (Required)

 in_bDeleteOriginalFile – If set to true, deletes the original files as well. (Optional)

Examples

 Delete (12345) – Deletes asset 12345 (but not the original files)

 Delete (12345, T) – Deletes asset 12345 and its original files

Returns

 Returns an array of files that could not be deleted because they are missing or referenced by other assets.
(Occurs when in_bDeleteOriginalFile is set to true and there is an error.)

Throws

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public String[] Delete (Integer in_numRecordId,

boolean in_bDeleteOriginalFile)

throws Throwable
30 Asset Maintenance Methods

4.7 SetThumbnailByCode

The method sets a thumbnail for an asset to a standard existing thumbnail based upon a preconfigured type_code. The
type_code is created from the TSAdmin interface (File Types section) with thumbnail upload.

Parameters:

 record_id - The asset record_id

 type_code - The thumbnail type code

Returns:

Nothing.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public boolean SetThumbnailByCode (int record_id,

String type_code)

throws Throwable
Integration Broker SDK Manual 31

4.8 AttachRendition

Attaches a rendition to an existing asset.

This method attaches a single rendition by calling the Ingest Broker. This is a synchronized call and might take some
time before the process is finished. A single rendition can be attached only if it is visible to the user and free from
another record.

Parameters

 in_strUrlToFile —The URL to the rendition file. In a form like http://[domain name]/[path]/[file name]

 in_numRecordId – The record ID of the asset to which the new rendition should be attached. The record ID
value is validated against the user's visible assets, and has to be visible.

 in_numRendId – The rendition ID for the rendition to attach. If this value is null, zero or a negative value,
the code will try to attach a provided file to the lowest visible rendition if it exists and is visible to the user. If
the rendition ID is not defined (in the renditions table) or not visible to the current user, an exception is
thrown. The rendition must be empty. It is not allowed to replace or update an existing rendition in this call.

 in_iIsMac – Pass 1 if the file is in Mac binary format; otherwise, 0. If this value is equal to 1 (one), the
downloaded file is assumed to be in Mac binary format and should have a file name in the form [file
name].[file extension].bin.

 in_strMigrationPolicy—Any applicable Migration Policy. Use a migration policy if the file has to migrated.
If this value is null or an empty string, the privileges for the current user are verified to ensure they can
import with no migration. If this value is not null, the current user must have visibility privileges for the pro-
vided migration policy. If the user privileges cannot be validated, an exception is thrown.

Returns:

 The attached rendition ID.

Throws

 Throwable in case of any error or if fails to validate input data or user privileges.

Sample SOAP UI call:

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:def="http://DefaultNamespace">
 <soapenv:Header/>

public int AttachRendition (String in_strUrlToFile

integer in_numRecordId

integer in_numRendId

int in_iIsMac

String in_strMigrationPolicy)

throws Throwable
32 Asset Maintenance Methods

 <soapenv:Body>
 <def:AttachRendition soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <in_strUrlToFile xsi:type="xsd:string">?</in_strUrlToFile>
 <in_numRecordId xsi:type="xsd:int">?</in_numRecordId>
 <in_numRendId xsi:type="xsd:int">?</in_numRendId>
 <in_iIsMac xsi:type="xsd:int">?</in_iIsMac>
 <in_strMigrationPolicy xsi:type="xsd:string">?</in_strMigrationPolicy>
 </def:AttachRendition>
 </soapenv:Body>
</soapenv:Envelope>

Example Code Call:

The following example code call uses the SOAP example call above.

TSWebServiceService service = new TSWebServiceServiceLocator();
service.createCall();
TSWebService telescopeService = service.getsoapservice(new java.net.URL(strEndPoint));
File attachedFile = new File(in_strFileName);
org.apache.axis.client.Stub telescopeStub = (org.apache.axis.client.Stub)telescopeService;
telescopeStub._setProperty(org.apache.axis.client.Call.ATTACHMENT_ENCAPSULATION_FORMAT,
 org.apache.axis.client.Call.ATTACHMENT_ENCAPSULATION_FORMAT_DIME);
String strFileName = attachedFile.getName();
DataHandler attachedFileDH = new DataHandler(new FileDataSource(attachedFile));
telescopeStub.addAttachment(attachedFileDH);
telescopeStub.setTimeout(12000);
iReturnValue = telescopeService.attachRendition(in_strUrlToFile, in_numRecordId, in_numRendId,
in_iIsMac, in_strMigrationPolicy);
Integration Broker SDK Manual 33

4.9 PopulatePopupValues
The PopulatePopupValues SOAP API call populates popup values for multilanguage support. The call must be
issued separately for every popup menu contained in the popups table, for each language. For more information on
multilanguage support, see the Administrator’s Guide.

Parameters:

 in_arNewPopupsValues array—contains the translations for each menu item. This array must contain
exactly the same number of popup items, in exactly the same order, as appear for the default language in the
popup table.

Example:

<in_arNewPopupsValues xsi:type="impl:ArrayOf_soapenc_string">

<in_arNewPopupsValues xsi:type="xsd:string">un</in_arNewPopupsValues>

<in_arNewPopupsValues xsi:type="xsd:string">deux</in_arNewPopupsValues>

<in_arNewPopupsValues xsi:type="xsd:string">trois</in_arNewPopupsValues>

</in_arNewPopupsValues>

 in_iColumnId—identifies the popup menu. Its value should be the integer that appears in the column_idx
column of the popups table beside the default popup menu values. (You will need to perform an SQL query
on the popups table to discover this value.)

Example:

<in_iColumnId xsi:type="xsd:int">12</in_iColumnId>

 in_strLangId—identifies the language. Standard language-country codes separated by an underscore are
required.

Example (for Canadian French):

<in_strLangId xsi:type="soapenc:string" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
">fr_CA</in_strLangId>

<impl>PopulatePopupValues

SEE EXAMPLE BELOW FOR FULL
IMPLEMENTATION

in_arNewPopupsValues

(array)

in_iColumnId (

(integer)

in_strLangId
(standard language code)

</impl>PopulatePopupValues

throws Throwable
34 Asset Maintenance Methods

Sample SOAP API Call to Populate Popup Values

The following SOAP API call will populate the popups_lang table with French equivalents for a popup menu with
values “one”, “two”, and three”. This popup menu is identified with a column ID value of “12”, which appears in the
column_idx column of the popups table.

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:impl="http://com/northplains/web/tsweb/soap/impl">
 <soapenv:Header/>
 <soapenv:Body>
 <impl:PopulatePopupValues soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <in_arNewPopupsValues xsi:type="impl:ArrayOf_soapenc_string">
 <in_arNewPopupsValues xsi:type="xsd:string">un</in_arNewPopupsValues>
 <in_arNewPopupsValues xsi:type="xsd:string">deux</in_arNewPopupsValues>
 <in_arNewPopupsValues xsi:type="xsd:string">trois</in_arNewPopupsValues>
 </in_arNewPopupsValues>
 <in_iColumnId xsi:type="xsd:int">12</in_iColumnId>
 <in_strLangId xsi:type="soapenc:string"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">fr_CA</in_strLangId>
 </impl:PopulatePopupValues>
 </soapenv:Body>
</soapenv:Envelope>
Integration Broker SDK Manual 35

36 Asset Maintenance Methods

Chapter 5: Download Methods

In this Section:

 Section 5.1, "Overview," on page 38

 Section 5.2, "Getfile," on page 39

 Section 5.3, "Download," on page 40

 Section 5.4, "DownloadStart," on page 42

 Section 5.5, "DownloadStatus," on page 44

 Section 5.6, "DownloadAged," on page 45

 Section 5.7, "DownloadAgedStart," on page 47

 Section 5.8, "DownloadStatus," on page 49

 Section 5.9, "DownloadPageURL," on page 50
Integration Broker SDK Manual 37

5.1 Overview
These methods provide a number of ways to download assets.

The download API calls in the Integration Broker can time out if the number and/or sizes of files being downloaded is
large, or if there are many complex conversions carried out as a part of the download. This results from the fact that
the current Download Integration Broker API call is a blocking call (to make things simple for the caller), but it
cannot provide the downloadable URL to the client until all of the requested files have been copied from their source
File Broker locations to the Telescope.web staging area (with conversion if necessary), and then optionally
compressed into a ZIP archive for serving to the caller.

If this process takes a long time, the caller's SOAP client may time out the call before the Telescope server is finished
its preparatory work. To solve this problem, two calls in the API permit the caller to use Integration Broker's
download functionality in an asynchronous manner.

The typical way of using these new calls in place of the current, blocking download call would be to simply 'busy
loop', waiting for the DownloadStatus call to indicate that it is ready. Ideally, while waiting, the caller should give the
user some feedback that the download preparation is in progress. Also, callers should keep in mind that SOAP is not
an inexpensive or lightweight protocol, so repeatedly calling DownloadStatus not only uses up network bandwidth
unnecessarily, but will result in wasted overhead on client and server.

5.1.1 Example
To replace the following call:

HashMap map = tsRemote.Download(listOfAssetItems);

The following program logic could be used:

long lDownloadKey = tsRemote.DownloadStart(listOfAssetItems);

HashMap map = tsRemote.DownloadStatus(lDownloadKey);

while (map.containsKey('PERCENT_DONE') == TRUE)

{

-- display waiting progress to user (or allow user to cancel)

-- delay some reasonable time (> 10 seconds recommended)

map = tsRemote.DownloadStatus(lDownloadKey);

}

error handling

extract and use 'DOWNLOAD_URL' from map
38 Download Methods

5.2 Getfile

This method calls DLManager to download a file from the system. It can be used to bypass the ZIP compression, and
MacBinary attributes if a direct URL to a file is desired. For example, when displaying a preview of a file, this call
could be used to convert to a 72dpi JPEG, and the resulting URL could be used directly in an HTML tag.

Parameters:

 in_numRecordId – A record ID for the file to be downloaded.

 in_numRenditionId – A rendition ID for the file to be downloaded; if this value is null, the lowest
visible rendition is used.

 in_strConversion – A conversion string if the file should be converted into a different format; can
have a null value if no conversion is required.

 in_bZipYn – True if the downloaded file requires to be zipped, false, otherwise.

 in_bIsMacBinary – True if a file has to be downloaded in Mac binary format.

Returns:

An NPSMap object with the following keys:

 DOWNLOAD_URL – A URL to the downloaded files.

 TIMESTAMP – A String value of the number of seconds elapsed since Jan, 1st, 1970 12:00 AM UTC.

 ERRORS – If there were any errors returned by DLManager and gracefully handled by this method,
the return value will contain one more ERRORS keys containing an array (ArrayList) of strings that
describe the errors. In case of a fatal error returned by DLManager, the return value will contain null
value for the key DOWNLOAD_URL.

 If there were no errors during the download process, the ERRORS key still might be present with a
null value or an empty array.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see
Section 15.1, "Exception Handling," on page 132.

NOTE: No exception is thrown if the DLManager is unable to download a file(s). Such errors are returned as a part
of the return value for the key ERRORS.

public NPSMap GetFile (Integer in_numRecordId,

Integer in_numRenditionId,

String in_strConversion,

boolean in_bZipYn,

boolean in_bIsMacBinary)

throws Throwable
Integration Broker SDK Manual 39

5.3 Download

This method downloads one or more assets. It also provides access to the file conversion framework to support on-
the-fly conversion during the download. The URL returned can be used to pull the file(s) to the client's computer. The
URL is only valid for a single HTTP download. This method always tells the DLManager to zip files as multiple files
cannot be downloaded without zipping them first.

Parameters

 in_arAssetsData – An array of NPSMap objects with the following keys and values:

 RECORD_ID: (Required) A Number value representing the record ID of the asset that is downloaded.

 RENDITION: (Optional) A Number value representing the rendition ID of the file that is
downloaded; if this value is null or missing, the lowest visible rendition will be used.

 CONV_STRING: (Optional) A String value containing the conversion string if the file is converted.

 COPYCOV_YN: (Optional) A String value which is a flag of one character length that indicates that
COV documents should be downloaded as well; this value must either be Y or N or a null value (a null
value is equal to N).

 INCLUDE_CONTAINERS: (Optional) An array of String objects indicating the container field
names whose contained documents should be downloaded as well. The format of each of the container
field name is [table_name].[column_name], where table_name and column_name are the values
returned by the EnumerateFields SOAP call. table_name is optional and if it is missing, the column is
considered as belonging to the editorial table. If one or more of the columns indicated here are not
visible to the current user, or they are not of the Container Field type, they are ignored and the
anomaly is recorded in the log file.

NOTE: Any other keys and values in the NPSMap object is ignored.

 in_bIsMacBinary – True if files must be downloaded in Mac binary format; this flag applies to all the
files in the in_arAssetsData array.

Returns

An NPSMap object with the following keys:

 DOWNLOAD_URL – A URL to the downloaded files.

 TIMESTAMP – A String value of the number of seconds elapsed since Jan, 1st, 1970 12:00 AM UTC.

 ERRORS – If there were any errors returned by DLManager and gracefully handled by this method,
the return value will contain one more ERRORS keys containing an array (ArrayList) of strings that
describe the errors. In case of a fatal error returned by DLManager, the return value will contain null
value for the key DOWNLOAD_URL.

public NPSMap Download (NPSMap[] in_arAssetsData,

boolean in_bIsMacBinary)

throws Throwable
40 Download Methods

 If there were no errors during the download process, the ERRORS key still might be present with a
null value or an empty array.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see
Section 15.1, "Exception Handling," on page 132.

NOTE: No exception is thrown if DLManager is unable to download the file(s). Such errors are returned as a part of
the return value in the ERRORS key.
Integration Broker SDK Manual 41

5.4 DownloadStart

This method calls DLManager to download one or more files asynchronously. This method always tells the
DLManager to zip files as multiple files cannot be downloaded without zipping them first.

Parameters

 in_arAssetsData – An array of NPSMap objects with the following keys and values:

 RECORD_ID: (Required) A Number value representing the record ID of the asset to be downloaded.

 RENDITION: (Optional) A Number value representing the rendition ID of the file to be downloaded;
if this value is null or missing, the lowest visible rendition is used.

 CONV_STRING: (Optional) A String value containing the conversion string if the file is converted.

 COPYCOV_YN: (Optional) A String value which is a flag of one character length that indicates that
COV documents should be downloaded as well; this value must either be Y or N or a null value (a null
value is equal to N).

 INCLUDE_CONTAINERS: (Optional) An array of String objects indicating the container field
names whose contained documents should be downloaded as well. The format of each of the container
field name is [table_name.column_name], where table_name and column_name are the values
returned by the EnumerateFields SOAP call. table_name is optional and if it is missing, the column is
considered as belonging to the editorial table. If one or more of the columns indicated here are not
visible to the current user, or they are not of the Container Field type, they are ignored and the
anomaly is recorded in the log file.

NOTE: Any other keys and values in the NPSMap object is ignored.

 in_bIsMacBinary – true if files must be downloaded in Mac binary format; this flag applies to all the
files in the in_arAssetsData array.

 in_bZipSingle – true if files must be bundled in one single zip archive (the configuration which
applies to Telescope.web's Download Now functionality, controlling whether single files, or single
files of specific file types, are compressed, is also adhered to by this call).

Returns:

A HashMap object with the key DOWNLOAD_KEY that contains a key identifying the current download. If there
were any errors returned by DLManager and gracefully handled by this method, the return value will contain one
more ERRORS keys containing an array (ArrayList) of strings that describe the errors. In case of a fatal error
returned by DLManager, the return value will contain null value for the key DOWNLOAD_URL.

If there were no errors during the download process, the ERRORS key still might be present with a null value or an
empty array.

public NPSMap DownloadStart (NPSMap[] in_arAssetsData,

boolean in_bIsMacBinary,

boolean in_bZipSingle)

throws Throwable
42 Download Methods

Throws

 java.lang.Throwable – In case of errors, including validation errors. For more information, seeSection
15.1, "Exception Handling," on page 132.

NOTE: No exception is thrown if DLManager is unable to download the file(s). Such errors are returned as a part of
the return value in the ERRORS key.
Integration Broker SDK Manual 43

5.5 DownloadStatus

This method returns assets downloading status from DLManager. If the operation is complete, it returns the
information necessary to retrieve the prepared file(s).

If the value of the passed key does not match one of the asynchronous download operations currently being executed
by the Integration Broker, the method will raise a SOAP fault.

Parameters

 in_strDownloadKey – A string value of the key for the download operation, obtained as the result
returned from a DownloadStart call.

Returns:

If the download operation is ongoing, this method returns a HashMap containing a single PERCENT_DONE key
with an integer value between 0 and 100, indicating the approximate percentage complete for the overall operation.

When the file(s) are converted, staged, and ready to be served to the caller, the returned HashMap will instead contain
the same keys as the return value for the original Download call.

The Integration Broker automatically cleans up and disposes all of its internal structures associated with the
asynchronous download operation as soon as it successfully returns the final, completed HashMap to the caller. For
this reason, any attempt by the caller to call DownloadStatus again for the same download key value will result in a
TSWeb-0033 SOAP fault being raised. The prepared file(s) are not deleted at this time, as they still need to be
retrieved by the caller, and is deleted by DLManager when they have been completely retrieved by the caller.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see
Section 15.1, "Exception Handling," on page 132.

NOTE: No exception is thrown if DLManager is unable to download the file(s). Such errors are returned as a part of
the return value in the ERRORS key.

public NPSMap DownloadStatus (String in_strDownloadKey)

throws Throwable
44 Download Methods

5.6 DownloadAged

This method calls DLManager to download a version of one or more files, prior to a given date. The "aged" call scans
the ED_VERSIONS table for the given record_id and rend_id looking for a version that was checked in on or before
the given date and time. If one is found, that file is downloaded. If not, the file referenced in DOC_RENDITIONS for
the passed-in record_id and rend_id is downloaded.

Parameters:

 in_arAssetsData – An array of NPSMap objects with the following keys and values:

 RECORD_ID: (Required) A Number value representing the record ID of the asset to be downloaded.

 RENDITION: (Optional) A Number value representing the rendition ID of the file to be downloaded;
if this value is null or missing, the lowest visible rendition is used.

 CONV_STRING: (Optional) A String value containing the conversion string if the file is converted.

 CURRENT_AS_OF: (Optional) A String value containing the number of seconds elapsed since Jan
1st 1970, 12:00:00 AM.

 COPYCOV_YN: (Optional) A String value which is a flag of one character length that indicates that
COV documents should be downloaded as well; this value must either be Y or N or a null value (a null
value is equal to N).

 INCLUDE_CONTAINERS: (Optional) An array of String objects indicating the container field
names whose contained documents should be downloaded as well. The format of each of the container
field names is [table_name].[column_name], where table_name and column_name are the values
returned by the EnumerateFields SOAP call. table_name is optional and if it is missing, the column is
considered as belonging to the editorial table. If one or more of the columns indicated here are not
visible to the current user, or they are not of the Container Field type, they are ignored and the
anomaly is recorded in the log file.

NOTE: Any other keys and values in the NPSMap object is ignored.

 in_bIsMacBinary – True if files must be downloaded in Mac binary format; this flag applies to all the
files in the in_arAssetsData array.

 in_bZipSingle – True if files must be bundled in one single zip archive (the configuration which
applies to Telescope.web's Download Now functionality, controlling whether single files, or single
files of specific file types, are compressed, is also adhered to by this call).

Returns:

An NPSMap object with the following keys:

public NPSMap DownloadAged (NPSMap[] in_arAssetsData,

boolean in_bIsMacBinary

boolean in_bZipSingle)

throws Throwable
Integration Broker SDK Manual 45

 DOWNLOAD_URL – A URL to the downloaded files.

 TIMESTAMP – A String value of the number of seconds elapsed since Jan, 1st, 1970 12:00 AM UTC.

 ERRORS – If there were any errors returned by DLManager and gracefully handled by this method,
the return value will contain one more ERRORS keys containing an array (ArrayList) of strings that
describe the errors. In case of a fatal error returned by DLManager, the return value will contain null
value for the key DOWNLOAD_URL.

If there were no errors during the download process the ERRORS key still might be present with a null value
or an empty array.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see
Section 15.1, "Exception Handling," on page 132.

NOTE: No exception is thrown if DLManager is unable to download the file(s). Such errors are returned as a part of
the return value in the ERRORS key.
46 Download Methods

5.7 DownloadAgedStart

This method calls DLManager to download one or more files asynchronously, attempting to retrieve a version that
has been checked in prior to a given date. The "aged" call scans the ED_VERSIONS table for the given record_id and
rend_id looking for a version that was checked in on or before the given date and time. If one is found, that file will
be downloaded. If not, the file referenced in DOC_RENDITIONS for the passed-in record_id and rend_id is
downloaded. This method always tells the DLManager to zip files as multiple files cannot be downloaded without
zipping them first.

Parameters

 in_arAssetsData: An array of NPSMap objects with the following keys and values:

 RECORD_ID: (Required) A Number value representing the record ID of the asset to be downloaded.

 RENDITION: (Optional) A Number value representing the rendition ID of the file to be downloaded;
if this value is null or missing, the lowest visible rendition is used.

 CONV_STRING: (Optional) A String value containing the conversion string if the file is converted.

 CURRENT_AS_OF: (Optional) A String value containing the number of seconds elapsed since Jan
1st 1970, 12:00:00 AM.

 COPYCOV_YN: (Optional) A String value which is a flag of one character length that indicates that
COV documents should be downloaded as well; this value must either be Y or N or a null value (a null
value is equal to N).

 INCLUDE_CONTAINERS: (Optional) An array of String objects indicating the container field
names whose contained documents should be downloaded as well. The format of each of the container
field names is [table_name.column_name], where table_name and column_name are the values
returned by the EnumerateFields SOAP call. table_name is optional and if it is missing, the column is
considered as belonging to the editorial table. If one or more of the columns indicated here are not
visible to the current user, or they are not of the Container Field type, they are ignored and the
anomaly is recorded in the log file.

NOTE: Any other keys and values in the NPSMap object is ignored.

 in_bIsMacBinary: True if files must be downloaded in Mac binary format; this flag applies to all the
files in the in_arAssetsData array

 in_bZipSingle: True if files must be bundled in one single zip archive (the configuration which
applies to Telescope.web's Download Now functionality, controlling whether single files, or single
files of specific file types, are compressed, is also adhered to by this call).

public NPSMap DownloadAgedStart (NPSMap[] in_arAssetsData,

boolean in_bIsMacBinary

boolean in_bZipSingle)

throws Throwable
Integration Broker SDK Manual 47

Returns

An NPSMap object with the following keys:

 DOWNLOAD_URL: A URL to the downloaded files

 TIMESTAMP: A String value of the number of seconds elapsed since Jan, 1st, 1970 12:00 AM UTC

 ERRORS: If there were any errors returned by DLManager and gracefully handled by this method,
the return value will contain one more ERRORS keys containing an array (ArrayList) of strings that
describe the errors. In case of a fatal error returned by DLManager, the return value will contain null
value for the key DOWNLOAD_URL.

 If there were no errors during the download process the ERRORS key still might be present with a
null value or an empty array.

Throws

 java.lang.Throwable: In case of errors, including validation errors. For more information, see Section
15.1, "Exception Handling," on page 132.

NOTE: No exception is thrown if DLManager is unable to download the file(s). Such errors are returned as a part of
the return value in the ERRORS key.
48 Download Methods

5.8 DownloadStatus

This method returns assets downloading status from DLManager. If the operation is complete, it returns the
information necessary to retrieve the prepared file(s).

If the value of the passed key does not match one of the asynchronous download operations currently being executed
by the Integration Broker, the method will raise a SOAP fault.

Parameters:

 in_strDownloadKey: A string value of the key for the download operation, obtained as the result
returned from a DownloadStart call.

Returns:

If the download operation is ongoing, this method returns a HashMap containing a single PERCENT_DONE key
with an integer value between 0 and 100, indicating the approximate percentage complete for the overall operation.

When the file(s) are converted, staged, and ready to be served to the caller, the returned HashMap will instead contain
the same keys as the return value for the original Download call.

The Integration Broker automatically cleans up and disposes all of its internal structures associated with the
asynchronous download operation as soon as it successfully returns the final, completed HashMap to the caller. For
this reason, any attempt by the caller to call DownloadStatus again for the same download key value will result in a
TSWeb-0033 SOAP fault being raised. The prepared file(s) are not deleted at this time, as they still need to be
retrieved by the caller, and are deleted by DLManager when they have been completely retrieved by the caller.

Throws:

 java.lang.Throwable: In case of errors, including validation errors. For more information, see Section
15.1, "Exception Handling," on page 132.

NOTE: No exception is thrown if DLManager is unable to download the file(s). Such errors are returned as a part of
the return value in the ERRORS key.

public NPSMap DownloadAgedStatus (String in_strDownloadKey)

throws Throwable
Integration Broker SDK Manual 49

5.9 DownloadPageURL

This method returns the URL of the DLManager page for downloading selected assets.

Parameters:

 in_arAssetsData: An array of NPSMap objects with the following keys and values for each asset to be
downloaded:

 RECORD_ID: (Required) A Number value representing the record ID of the asset to be downloaded

 RENDITION: (Optional) A Number value representing the rendition ID of the file to be downloaded;
if this value is null or missing, the lowest visible rendition is used

 CONV_STRING: (Optional) A String value containing the conversion string if the file is converted

 COPYCOV_YN: (Optional) A String value which is a flag of one character length that indicates that
COV documents should be downloaded as well; this value must either be Y or N or a null value (a null
value is equal to N)

 INCLUDE_CONTAINERS: (Optional) An array of String objects indicating the container field
names whose contained documents should be downloaded as well. The format of each of the container
field name is [table_name.column_name], where table_name and column_name are the values
returned by the EnumerateFields SOAP call. table_name is optional and if it is missing, the column is
considered as belonging to the editorial table. If one or more of the columns indicated here are not
visible to the current user, or they are not of the Container Field type, they are ignored and the
anomaly is recorded in the log file.

NOTE: Any other keys and values in the NPSMap object is ignored.

 in_bIsMacBinary: True if files must be downloaded in Mac binary format; this flag applies to all the
files in the in_arAssetsData array

 in_strSiteName: A string value representing the site name.

 in_bZipSingle: True if files must be bundled in one single zip archive (the configuration which
applies to Telescope.web's Download Now functionality, controlling whether single files, or single
files of specific file types, are compressed, is also adhered to by this call).

public NPSMap DownloadPageURL (NPSMap[] in_arAssetsData,

boolean in_bIsMacBinary,

string in_strSiteName,

boolean in_bZipSingle)

throws Throwable
50 Download Methods

Chapter 6: API Methods: Catalogs

Methods in the Catalogs functional group focus on providing external access to the nested catalog structure and
catalog information in the Telescope environment. Given their nested structure, to uniquely identify a catalog in the
Telescope system, one must specify the path to the catalog. A catalog path is a string that defines the catalog's within
the overall nesting structure, and is composed of the name(s) of all of the catalogs from the root of the catalog tree
down to the desired catalog, separated by a pipe character (|).

In this Section:

 Section 6.1, "AddToCatalog," on page 52

 Section 6.2, "CreateCatalog," on page 53

 Section 6.3, "EnumerateCatalogs," on page 54

 Section 6.4, "DeleteCatalog," on page 55

 Section 6.5, "GetCatalogAssets," on page 56

 Section 6.6, "GetCatalogProperties," on page 57

 Section 6.7, "RemoveFromCatalog," on page 58

 Section 6.8, "SetCatalogProperties," on page 59
Integration Broker SDK Manual 51

6.1 AddToCatalog

This method adds one or more assets to a catalog. The logged-in user must have edit permissions on the specified
catalog and be able to see the assets. If any of the asset record_ids passed are invalid or invisible to the logged-in user
a SOAP fault is raised and none or the records are added to the catalog.

This method will execute any Add To Catalog functional rules for each asset in the list. For more information about
how the Integration Broker handles functional rules, see Working with Functional Rules.

Parameters:

 in_strPath – The catalog path for the parent catalog.

 in_strPassword – The current password for validation.

 in_arRecordIds – An array of integers representing the record_id values for the assets to be added to the cat-
alog.

Returns:

An array of strings containing any functional rule error messages that were generated as the result of this execution.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public String[] AddToCatalog (String in_strPath,

String in_strPassword,

int[] in_arRecordIds)

throws Throwable
52 API Methods: Catalogs

6.2 CreateCatalog

This method creates a new, empty catalog.

Parameters:

 in_strNestingPath – The catalog path of the catalog under which the new catalog shouldbe created.

 in_strName – The name of the catalog which is created.

 in_strPassword – The new view password for the catalog.

 in_aACL – An array of NPCatalogACLEntry structures, which define a new set of visibility and editing per-
missions for the catalog.

 in_bAllowNesting – The value that allows nesting (YES or NO) in the added catalog.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public void CreateCatalog (String in_strNestingPath,

String in_strName,

String in_strPassword,

NPSCatalogACLEntry[] in_aACL,

boolean in_bAllowNesting)

throws Throwable
Integration Broker SDK Manual 53

6.3 EnumerateCatalogs

This method returns the catalogs nested within the given catalog structure.

Parameters:

in_strPath – The catalog path for the parent catalog; if this does not refer to a valid catalog, this method will raise a
SOAP fault. To obtain the 'root' level catalogs, pass an empty string for this parameter.

Returns:

Returns a list of structures containing the information for each catalog contained in the first level under the parent
structure and visible to the logged-in user (or an empty list). Each structure contains information about the catalog
including the catalog name, create and modified date, owner, password protection, number of assets contained and
number of catalogs nested under the first level below.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public NPSCatalogInfo[] EnumerateCatalogs (String in_strPath)

throws Throwable
54 API Methods: Catalogs

6.4 DeleteCatalog

This method deletes a catalog. The logged-in user must be either the owner of the specified catalog, or an
administrator who has group visibility to the catalog owner.

Parameters:

 in_strPath – The catalog path for the parent catalog.

Returns:

Returns true if the catalog and all descendants were able to be deleted or false otherwise.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public boolean DeleteCatalog (String in_strPath)

throws Throwable
Integration Broker SDK Manual 55

6.5 GetCatalogAssets

This method gets a list of the assets in a given catalog.

Parameters:

 in_strPath – The catalog path for the parent catalog.

 in_strPassword – The current password for validation.

Returns:

An array of integers representing the assets in the catalog. Only those assets that are visible to the logged-in user are
returned.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public int[] GetCatalogAssets (String in_strPath,

String in_strPassword)

throws Throwable
56 API Methods: Catalogs

6.6 GetCatalogProperties

This method returns the properties information for a given catalog available to the logged-in user.

Parameters:

 in_strPath – The path to the parent catalog.

Returns:

Returns the properties information of the passed-in catalog, provided the user is the owner of the catalog or an
administrator who has visibility over the catalog owner, otherwise an SOAP fault is raised. The structure contains
information about the parent catalog path, password protection, and the access control list (ACL) defining the
visibility and editing permissions for the catalog. Each entry in the ACL contains information about the target entity
(either a user name, a user group name, or the special value" !ALL!", which indicates that every user whose user
group visibility allows them to see the owner of the catalog, can see the catalog) and a flag indicating either read-only
or modify privileges.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public NPSCatalogProperties GetCatalogProperties (String in_strPath,

throws Throwable
Integration Broker SDK Manual 57

6.7 RemoveFromCatalog

This method removes one or more assets from a catalog. The logged-in user must have 'edit' permission for the
specified catalog.

This method will execute any Remove From Catalog functional rules for each asset in the list. For more information
see Working with Functional Rules.

Parameters:

 in_strPath – The catalog path for the parent catalog.

 in_strPassword – The current password for validation.

 in_arRecordIds – An array of the record_id values for the assets to be added to the catalog.

Returns:

Returns an array of strings containing the record_id values of the assets that were removed from the catalog and any
functional rule error messages that were generated as the result of this execution.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public String[] RemoveFromCatalog (String in_strPath,

String in_strPassword,

int[] in_arRecordIds)

throws Throwable
58 API Methods: Catalogs

6.8 SetCatalogProperties

This method sets the catalog's properties information. The logged-in user must be the owner of the catalog, or be an
administrator who has visibility over the catalog owner or a SOAP fault is raised.

Parameters:

 in_strPath – The catalog path for the parent catalog.

 in_strNewNesting – A catalog path that defines an existing catalog in the system, under which the catalog
should be moved.

 in_strNewName – The new name for the catalog. The new name for the catalog must not already exist at the
selected nesting level in the system.

 in_strPassword – The new view password for the catalog.

 in_aACL – An array of NPCatalogACLEntry structures that define a new set of visibility and editing per-
missions for the catalog.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public void SetCatalogProperties (String in_strPath,

String in_strNewNesting,

String in_strNewName,

String in_strPassword,

NPSCatalogACLEntry[] in_aACL

throws Throwable
Integration Broker SDK Manual 59

60 API Methods: Catalogs

Chapter 7: API Methods: Ingestion

This section provides information about the ingesting files:

 Section 7.1, "Overview," on page 62

 Section 7.2, "Ingest," on page 63

 Section 7.3, "GetIngestStatus," on page 64

 Section 7.4, "GetTemplateNames," on page 65

 Section 7.5, "IngestWithTemplate," on page 66

 Section 7.6, "IngestWithData," on page 67

 Section 7.7, "IngestWithTemplateAndData," on page 68

 Section 7.8, "IngestWithStatus," on page 69

 Section 7.9, "IngestWithDataAndStatus," on page 70

 Section 7.10, "GetIngestWithDataStatus," on page 71
Integration Broker SDK Manual 61

7.1 Overview
Ingestion and check in methods "WithData" allow a calling application to pass the actual binary data for an ingested
file, as a part of the calls themselves, rather than indirectly as URLs that the Integration Broker must then 'pull' the
file from (which can be problematic if the client is not local to the Integration Broker, and doesn't have a handy HTTP
or FTP server to put the file on, so Integration Broker can retrieve it).

The following methods are available to transfer binaries over SOAP:

 Input parameter to the Web service method - highly inefficient due to the huge overhead caused by the usu-
ally BASE64 encoding of data in the SOAP payload.

 SOAP with Attachments - provides a standardized way to send a MIME-encoded message that includes the
SOAP envelope in one MIME part, and an arbitrary number of attachments in the other MIME parts. With
this technique, the file can be sent as a single MIME part in a two-part MIME message. This method has its
own downsides, the primary one being that while MIME boundaries make it easy for the sender of the
attachment to add an arbitrary number of attachments, it takes considerably more work to pick out the pre-
cise attachments from the receiver's standpoint, since each attachment must be scanned in its entirety, in
order to find the MIME boundaries.

 DIME and WS-Attachments – DIME (Direct Internet Message Encapsulation) is a standard for sending a
message in explicitly-sized chunks. WS-Attachments is a standard that defines how to use DIME to send
attachments in a Web service call. For example, one chunk could contain the SOAP envelope while another
chunk could contain the attachment. DIME and WS-Attachments are the preferred technique for sending
attachments. Unlike SOAP with Attachments, which uses MIME boundaries to separate the attachments
from one another, DIME uses explicitly-sized chunks. Each chunk has a record number and a size associated
with it, therefore the receiver of a DIME-formatted message can quickly move from one attachment to
another. With SOAP with Attachments, moving from one attachment to another requires examining the first
attachment in its entirety, looking for the MIME boundary whereas with DIME, the receiver only needs to
check the size of the current chunk and then skip ahead however many bytes specified to get to the begin-
ning of the next chunk.

Only a single data stream (that is, only the data fork of a multi-fork file) can be sent to Telescope using this
method. If the file being ingested or checked-in is a multi-fork file (for example, from a Macintosh), the
caller must first convert the file into a single-stream format using the standard MacBinary encoding, before
passing the stream to Integration Broker, and indicate in the call that the stream refers to a MacBinary file,
by passing TRUE for the in_bIsMac parameter. Integration Broker will automatically decode the MacBinary
file during the ingestion.
62 API Methods: Ingestion

7.2 Ingest

This call adds new assets to the system. Assets must be accessible via the internet, using the passed-in URL. To ingest
assets not accessible via the internet (for example assets on a user's desktop) use the IngestWithData method.
Integration Broker pulls the assets into the Telescope system and puts them on a File Broker in the same way as
Telescope.web. This method doesn't support binary data in the MIMiX file as there is no support for the binary data
type in the extra_columns table. This method can be used only inside response-request loop.

Parameters:

 in_arUrls – An array of URLs to the files. If this value is null or an empty array, a single New Document is
created.

 in_strMimix – A string that represents a MIMiX XML file with metadata.

 in_iRenditionId – The rendition ID to assign to the ingested files. If the value is less than or equal to 0 or
null, the assets is ingested with the lowest visible rendition for the current user.

 in_iIsMac – Pass 1 if the files are in Mac binary format, otherwise, 0. This flag applies to all the files in the
in_arUrls array.

Returns:

Returns an array of record IDs for successfully ingested assets.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public int[] Ingest (String[] in_arUrls,

String in_strMimix,

int in_iRenditionId,

int in_iIsMac)

throws Throwable
Integration Broker SDK Manual 63

7.3 GetIngestStatus

Queries ingest status associated with the unique request/process ID obtained in a call to {IngestWithStatus (String[],
String, int, boolean, String)}

This method has to be called in a loop with some delay (to avoid high CPU usage) until the status returns "DONE".

The return status "DONE" means that the ingest process is finished, either succeeded, failed or with some errors.

Parameters:

 in_strProcessId — unique request/process id returned by {IngestWithStatus (String[], String, int, boolean,
String)}

Returns:

Returns the current status of the ingest process.

The return value might have the following keys. Each key-value pair is represented by {NPSMapItem} in the array in
the return value {NPSMap}

 "DONE" — if present, contains a boolean value. "True" value indicates the ingest process is finished. If the
value is "false" or missing, a call to this method should continue until the value is "true".

 "ERRORS" — if present, contains an array of strings if there were any error during the ingest process.

 "RECORD_IDS" — if present, contains an array of integers, primary keys of the ingested assets. If this key-
value pair is missing or doesn't contain any value when "DONE" value is "true", means that no assets were
successfully ingested.

 "MESSAGES" — if present, contains and array of strings. These messages can be displayed for the user
indicating progress of the ingest in a readable form.

These messages can be configured or adjusted using SOAPMessages.plist file following under 6xxx range.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information see Section 15.1,
"Exception Handling," on page 132.

public String[] GetIngestStatus (int in_strProcessId)

throws Throwable
64 API Methods: Ingestion

7.4 GetTemplateNames

This gets a list of the templates available in the system. This is used to support the IngestWithTemplate call.

Returns:

Returns an array of strings containing the names of the templates visible to the user.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public String[] GetTemplateNames ()

throws Throwable
Integration Broker SDK Manual 65

7.5 IngestWithTemplate

This method adds new assets to the system with the metadata from the passed in template. Assets must be accessible
via the internet, using the passed-in URL. Integration Broker pulls the assets into the Telescope system and puts them
on a File Broker in the same way that Telescope.web does.

This method doesn't support binary data in the MIMiX file as there is no support for the binary data type in the
extra_columns table. This method can be used only inside response-request loop.

Parameters:

 in_arUrls – The URLs to the files. If the value in the array is null, an empty asset is created.

 in_strTemplateName – A string representing a template name in the JOBS table. The template stored under
this name must be in MIMiX format. Use the GetTemplateNames method to get a list of available templates
in the JOBS table.

 in_iRenditionId – The rendition ID to assign to the ingested files. If the value is less than or equal to 0 or
null, the assets is assigned the lowest visible rendition for the current user.

 in_iIsMac – Pass 1 if the files are in Mac binary format, otherwise, 0. This flag applies to all the files in the
in_arUrls array.

Returns:

Returns an array of record IDs for successfully ingested assets.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information see Section 15.1,
"Exception Handling," on page 132.

public int[] IngestWithTemplate (String[] in_arUrls,

String in_strTemplateName,

int in_iRenditionId,

int in_iIsMac)

throws Throwable
66 API Methods: Ingestion

7.6 IngestWithData

This method passes the binary data for an file when it is ingested. The binary data is sent as a DIME attachment to the
SOAP call. For more information about passing binary data, see Section 7.1, "API Methods: Ingestion," on page 61.

NOTE: The attachment type of the file attached to the request should be set to "application/octet-stream" in order for
the TSWeb SOAP provider to understand it correctly.

Parameters:

 in_strMimix – A string that represents a MIMiX XML file with metadata for the asset.

 in_iRenditionId – The rendition ID to assign to the ingested file. If the value is less than or equal to 0 or null,
the asset is assigned the lowest visible rendition for the current user.

 in_bIsMac – True if the files are in Mac binary format, otherwise, false.

 in_strFileName – The input file name.

Returns:

Returns the newly created record_id value.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public int[] IngestWithData (String in_strMimix,

int in_iRenditionId,

boolean in_bIsMac,

String in_strFileName)

throws Throwable
Integration Broker SDK Manual 67

7.7 IngestWithTemplateAndData

This method passes the actual binary data for an ingested file with its template. The binary data is sent as a DIME
attachment to the SOAP call. For more information about passing binary data, see Section 7.1, "API Methods:
Ingestion," on page 61.

.

Parameters:

 in_strTemplate – A string representing a template name in the JOBS table. The template stored under this
name must be in the MIMiX format. Use the GetTemplateNames method to get a list of available templates
in the JOBS table.

 in_iRenditionId – The rendition ID to assign to the ingested file. If the value is less than or equal to 0 or null,
the asset is assigned the lowest visible rendition for the current user.

 in_bIsMac – True if the file is in Mac binary format, otherwise, false.

 in_strFileName – The input file name.

Returns:

Returns the newly created record_id values.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public int IngestWithTemplateAndData (String in_strTemplate,

int in_iRenditionId,

boolean in_bIsMac,

String in_strFileName)

throws Throwable
68 API Methods: Ingestion

7.8 IngestWithStatus

This call ingests multiple assets into the Telescope database asynchronously.

The binary data is sent as a DIME attachment to the SOAP call. For more information about passing binary data, see
Section 7.1, "API Methods: Ingestion," on page 61.

Parameters:

 in_arUrls — An array of URLs to the files. If this value is null or an empty array, a single New Document is
created.

 in_strMimix — A string that represents a MIMiX XML file with metadata fields.

 in_iRenditionId — The rendition ID to assign to the ingested files. If the value is less than or equal to 0 or
null, the assets is ingested with the lowest visible rendition for the current user.

 in_bIsMac — 1 if a file is in Mac binary format; otherwise, 0.

 in_strTemplateName — a string that represents a template name in the jobs table. The template stored under
this name MUST be in the MIMiX format. If this value is present, the MIMiX string is ignored and a tem-
plate is used instead.

Returns:

Returns a unique ID associated with the current request. The unique ID is returned without waiting while the ingest
process is finished.

This unique ID should be used in calls to {@link #GetIngestStatus(String)} to obtain the current status of the ingest.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public int[] IngestWithStatus (String[] in_arUrls,

String in_strMimix,

int in_iRenditionId,

int in_bIsMac

String in_strTemplateName)

throws Throwable
Integration Broker SDK Manual 69

7.9 IngestWithDataAndStatus

This call ingests multiple assets into the Telescope database asynchronously.

The binary data is sent as a DIME attachment to the SOAP call. For more information about passing binary data, see
Section 7.1, "API Methods: Ingestion," on page 61.

Parameters:

 in_strMimix — A string that represents a MIMiX XML file with metadata fields.

 in_iRenditionId — The rendition ID to assign to the ingested files. If the value is less than or equal to 0 or
null, the assets is ingested with the lowest visible rendition for the current user.

 in_bIsMac — 1 if a file is in Mac binary format; otherwise, 0.

 in_strTemplateName — a string that represents a template name in the jobs table. The template stored under
this name MUST be in the MIMiX format. If this value is present, the MIMiX string is ignored and a tem-
plate is used instead.

Returns:

Returns a unique ID associated with the current request. The unique ID is returned without waiting while the ingest
process is finished.

This unique ID should be used in calls to {@link #getIngestWithDataStatus(String)} to obtain the current status of
the ingest.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. or more information, see Section 15.1,
"Exception Handling," on page 132.

Example:

public int[] IngestWithStatus (String[] in_arUrls,
String in_strMimix,
int in_iRenditionId,
int in_bIsMac
String in_strTemplateName)
throws Throwable

public int[]
IngestWithDataAndStatus

(String in_strMimix,

int in_iRenditionId,

int in_bIsMac

String in_strTemplateName)

throws Throwable
70 API Methods: Ingestion

7.10GetIngestWithDataStatus

Queries ingest status associated with the unique request/process ID obtained in a call to {IngestWithStatusAndData
(String[], String, int, boolean, String)}

This method has to be called in a loop with some delay (to avoid high CPU usage) until the status returns "DONE".

The return status "DONE" means that the ingest process is finished, either succeeded, failed or with some errors.

Parameters:

 in_strProcessId — unique request/process id returned by {IngestWithStatusAndData (String[], String, int,
boolean, String)}

Returns:

Returns the current status of the ingest process.

The return value might have the following keys. Each key-value pair is represented by {NPSMapItem} in the array in
the return value {NPSMap}

 "DONE" — if present, contains a boolean value. "True" value indicates the ingest process is finished. If the
value is "false" or missing, a call to this method should continue until the value is "true".

 "ERRORS" — if present, contains an array of strings if there were any error during the ingest process.

 "RECORD_IDS" — if present, contains an array of integers, primary keys of the ingested assets. If this key-
value pair is missing or doesn't contain any value when "DONE" value is "true", means that no assets were
successfully ingested.

 "MESSAGES" — if present, contains and array of strings. These messages can be displayed for the user
indicating progress of the ingest in a readable form.

These messages can be configured or adjusted using SOAPMessages.plist file following under 6xxx range.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information see Section 15.1,
"Exception Handling," on page 132.

public String[]
GetIngestWithDataStatus

(int in_strProcessId)

throws Throwable
Integration Broker SDK Manual 71

72 API Methods: Ingestion

Chapter 8: Login/Out and Session
Maintenance

This section provides information about logging in and out and session maintenance:

 Section 8.1, "Overview," on page 74

 Section 8.2, "Login," on page 75

 Section 8.3, "LoginWithProvider," on page 76

 Section 8.4, "EnumerateConnections," on page 78

 Section 8.5, "Greeting," on page 79

 Section 8.6, "IsValidSession," on page 80

 Section 8.7, "Logout," on page 81
Integration Broker SDK Manual 73

8.1 Overview
The first call must always be one of the SOAP Login calls; these calls return two URLs: a new SOAP endpoint URL,
and a URL for accessing the UI Service.

The session ID is automatically embedded in the URLs by the Integration Broker. This session is maintained on the
server and expires after a period of time if no further calls are made. Use the greeting call periodically to keep the
session alive if necessary.

The Logout call terminates the session.
74 Login/Out and Session Maintenance

8.2 Login

This must be the first call made by the client to the Integration Broker. The only call supported by the "main" SOAP
endpoint is the Login call. All subsequent calls to the SOAP API must be made to the SOAP_SERVICE endpoint
returned from the Login call.

Parameters:

 inStrConnName – The name of the connection to log in to.

 inStrUsername – The user name to connect with.

 inStrPassword – The password to connect with.

Returns:

Returns an NPSMap containing the SOAP_SERVICE and UI_SERVICE URLs to use for respective services.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public NPSMap Login (String inStrConnName,

String inStrUsername,

String inStrPassword)

throws Throwable
Integration Broker SDK Manual 75

8.3 LoginWithProvider

This method must be called before any other method. It validates the user against the specified data source, using an
authentication provider class. This is the login with provider method that must be called by the TSWeb SOAP SSO
service in order to use all other SOAP services.

In case of errors, including validation errors If the login is not successful, the method returns an error message as a
SOAP fault indicating the reason for the failure.

Parameters:

 in_strConnName – The connection name. This must match the label for a connection in the sites.plist file. In
the event of duplicate connection names across multiple sites, the first one found is used.

 inStrProviderName – A String that identifies the name of the plug-in class used to perform authentication.

 hValues – A transparent HashMap object that is used by the authentication provider class during
authentication.

Returns:

Returns an NPSMap containing the SOAP_SERVICE and UI_SERVICE URLs to use for respective services.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

8.3.1 Performing Authentication
The com.northplains.authentication.AuthenticationProviderInterface has the following method which must be
implemented by the concrete plug-in class that represents an authentication provider:

Parameters:

 hValues – A transparent HashMap object.

public NPSMap LoginWithProvider (String inStrConnName,

String inStrProviderName,

NPSMap hValue)

throws Throwable

public String authenticater (NPSMap hValue)

throws Throwable
76 Login/Out and Session Maintenance

Returns:

Returns a String containing a Telescope existing user name, which has been authenticated. If the user does not exist,
an empty string is returned. If the information provided into the HashMap object is null or unusable, a null String
object is returned.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.
Integration Broker SDK Manual 77

8.4 EnumerateConnections

This method returns database connection(s) for a given site as defined in the sites.plist file. This call can be made
before the Login or LoginWithProvider calls are made to the Integration Broker.

Parameters:

 in_strForSite – The name of the site (from the sites.plist file).

Returns:

An array of the site connections in an NPSMapArray object.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Section 15.1,
"Exception Handling," on page 132.

public NPSMapArray EnumerateConnectionsr (String in_strForSite)

throws Throwable
78 Login/Out and Session Maintenance

8.5 Greeting

Use this method to verify that the SOAP service is up and running. It can also be used by clients who do not make
regular calls to the Integration Broker to prevent their sessions from expiring. How often the call should be made is
governed by the session timeout value on the Integration Broker (usually 30 minutes).

Returns:

Returns a welcome message that reads "Hello <user>".

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public String greeting ()

throws Throwable
Integration Broker SDK Manual 79

8.6 IsValidSession

This method checks whether a given session ID is valid.

Parameters:

 in_strSessionId – A String object representing the sessionId (WOSession) to be looked up.

Returns:

Returns a boolean value: true if the sessionId is valid, and false otherwise.

public boolean IsValidSession (String in_strSessionId)
80 Login/Out and Session Maintenance

8.7 Logout

This method terminates the active session. The SOAP endpoint URL used for this call, and the equivalent UI Service
URL, become invalid as soon as this call returns. After this call the service consumer must log in again to use the
services.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void Logout ()

throws Throwable
Integration Broker SDK Manual 81

82 Login/Out and Session Maintenance

Chapter 9: API Methods: Metadata
Methods

The metadata access methods allow a calling application to get and change metadata for one or more assets.

The bulk metadata access methods permit access to multiple fields of an asset in a single call, and the ability to per-
form Change Multiple operations via the API.

In this Section:

 Section 9.1, "EnumerateFields," on page 84

 Section 9.2, "GetData," on page 86

 Section 9.3, "GetDataMultiple," on page 87

 Section 9.4, "SetData," on page 88

 Section 9.5, "SetDataMultiple," on page 89
Integration Broker SDK Manual 83

9.1 EnumerateFields

This method provides information about the metadata model that is accessible to the logged-in user. The returned
hash map contains complete information about each visible field, including data type, database column and table
names, popup menu items, etc. This method gets all fields visible for the current user as defined by the extra_columns
and view_fields tables.

Returns:

An NPSMapArray where each NPSMap within the array contains keys and values as a result of two joined tables:
EXTRA_COLUMNS and VIEW_FIELDS. The keys and values from the VIEW_FIELDS table are view_order and
edit_yn. All the keys are in upper case.

Each NPSMap also contains a DATATYPE_VIEWNAME key whose value is a display name of the data type
defined, and if this field has popups values defined in the popups table, a POPUPS key whose value is an array of
strings.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

Example:

 key: TABLE_NAME value: editorial
 key: VIEW_ORDER value: 20
 key: DATATYPE_VIEWNAME value:
 key: VIEWER_NAME value: Date Produced
 key: DISTRIBUTE_YN value: Y
 key: EDIT_YN value: Y
 key: PRIV_LVL value: Null
 key: COLCASCADE_YN value: Null
 key: REQUIRED_YN value: Null
 key: COLUMN_NAME value: date_produced
 key: SEARCH_OPERATORS value: (NPSMap Array) {OPERATOR_ID=1, OPERATOR=Is,

OPERATOR_SHORT==},{OPERATOR_ID=2, OPERATOR=Is Not,
OPERATOR_SHORT=!=},{OPERATOR_ID=3, OPERATOR=Less Than,
OPERATOR_SHORT=<},{OPERATOR_ID=4, OPERATOR=Greater Than,
OPERATOR_SHORT=>},{OPERATOR_ID=5, OPERATOR=Less Than Or Equal,
OPERATOR_SHORT=<=},{OPERATOR_ID=6, OPERATOR=Greater Than Or Equal,
OPERATOR_SHORT=>=}

 key: MAX_LEN value: 1
 key: ID value: 11
 key: LOOKUP_YN value: Null
 key: CUSTOM_YN value: Null
 key: VALIDATE_YN value: Null
 key: DATA_TYPE value: 5
 key: COL_PROPERTIES value: Null

public NPSMapArray EnumerateFieldsr (

throws Throwable
84 API Methods: Metadata Methods

Integration Broker SDK Manual 85

9.2 GetData

This method gets the metadata stored in a Telescope database field for a given asset. Any metadata (including fields
outside of editorial) is accessible. Rendition ID is optional and only applies if asking for file related metadata (such as
file_name or file_type).

Parameters:

 in_numRecordId – The record ID of the asset.

 in_numRenditionId – The rendition ID of the file. This value is used only for DOC_RENDITIONS table. If
this value is null or less than or equal to 0, the lowest visible rendition ID is used instead.

 in_strFieldName – A fully qualified field name, in the format [table name].[column name]; if there is no
table name qualifier, EDITORIAL table is assumed.

Returns:

The object returned depends on the type of data requested:

 If the field is defined in the database as binary, the return value is an array of bytes.

 If the column in the database is defined as timestamp/date, the return value is converted into a string with the
format yyyy/MM/dd HH:mm:ss.

 If the record for the given record ID or/and rendition ID is not found or there is no value for the given field,
returns null

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public Object GetData (Integer in_numRecordId,

Integer in_numRenditionId,

String in_strFieldName)

throws Throwable
86 API Methods: Metadata Methods

9.3 GetDataMultiple

This method retrieves the values for one or more asset metadata fields from one or more assets in a single call. The
actions retrieved are activated by calling getMBMessageAction.

The passed-in record_id values must refer to valid Telescope asset records the logged-in user has permission to see,
otherwise, this method will raise a SOAP fault. Similarly, the passed in field names must be valid Telescope metadata
fields or rendition fields.

Parameters:

 in_arRecordIds – An array of the record_id values for which metadata is to be retrieved.

 in_arFields – An array of the Telescope field names to retrieve for each asset.

Returns:

Returns a MIMiX-formatted string containing one or more ASSET elements (one for each requested asset). Each
ASSET element will contain a FIELD element for each of the requested fields. The ASSET tags in the returned
MIMiX data will always include an ID attribute, containing the asset's record_id identifier, so the multiple requested
records can be distinguished from each other. If one of the requested fields passed in to the call via in_arFields was
the meta:viewex metafield, and a requested asset has a COV or Video Manager extended view, then the returned
ASSET element for that asset will also include the COV or VIDEOMGR elements, containing the asset's extended
view data.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

 “The supplied list of record_id values is too large”—The upper limit for this call is 1000 by default, as
defined by the ‘MAX_MULTI_RECORDS’ parameter in the TSWeb config.plist file. To change this limit,
go to the C:\Telescope\Applications\tsweb.woa\Contents\Resources\Config.plist file (default loca-
tion shown) and update the MAX_MULTI_RECORDS key. Since this is an optional key, you may need to
add it to the file.

public String GetDataMultiple (int[] in_arRecordIds,

String[] in_arFields)

throws Throwable
Integration Broker SDK Manual 87

9.4 SetData

This method permits modification of metadata in the Telescope database by the caller. The Rendition ID is only used
if file-based metadata is being set. The “object” value is interpreted differently, depending on the data type of the field
being set.

This method updates the data for the given field. This method supports all the fields defined in the extra_columns
table. In addition, this method also supports all the fields in the doc_renditions, thumbnails and viewex tables.

Parameters:

 in_numRecordId – A record ID of the asset to be updated

 in_numRenditionId – A rendition ID of the file. This value is valid only for the doc_renditions table. If the
table name is doc_renditions and this value is less than or equal to 0 or null, the lowest visible rendition for
the current user will be used instead.

 in_strFieldName – A fully qualified field name in the format [table name].[column name]. If the table qual-
ifier is missing, the editorial table is assumed.

 in_objValue – A new value for which the given field should be updated. If this value is null and the field is
a type of normalized repeating, the normalized repeating record(s) is deleted from the database for the given
record ID. If the field is a type of binary, in_objValue must be an array of bytes. If the field is a type of time-
stamp/date, in_objValue must be a type of string in the format yyyy/MM/dd HH:mm:ss

Throws:

 Throws errors as standard SOAP exceptions

 Throwable - in case of error, or if there’s a failure to validate user privileges.

public void SetData (int in_numRecordId,

int in_numRenditionId,

String in_strFieldName,

Object in_objValue)

throws Throwable
88 API Methods: Metadata Methods

9.5 SetDataMultiple

This method permits modification of multiple assets elements in the Telescope database.

This method accepts a MIMiX-formatted string containing data to be used for changes. This MIMiX data may
contain multiple ASSET elements, to set the data for multiple assets at once.

The ‘Change Metadata’ functional rules for the currently logged-in user are executed before the database update is
done. As with other calls in the Integration Broker API that execute functional rules, if the user’s rules return a
challenge form, this will be treated as a failure, with the error message: ‘Challenge forms are not supported in
functional rules using the SOAP API’. Transactions are committed after each asset update.

Parameters:

 in_strMimix – an XML string in MIMiX format

Returns:

 Returns a list of updated records and the eventual Functional Rules errors being raised.

 The return value contains two keys, ERRORS and RECORD_IDS. ERRORS key has an array of strings
with error messages. RECORD_IDS has an array of integers for the assets that were updated.

Throws:

 Throwable - in case of error, or if there’s a failure to validate user privileges.

This method will raise a SOAP fault in the following situations:

 If the string is empty, or does not contain valid MIMiX data.

 If the passed-in MIMiX data contains ASSET elements without the ID attribute, or if the ID attributes do not
refer to valid Telescope asset records, or if they refer to assets which the logged-in user cannot see because
of their where clause.

 If any FIELD element (in any ASSET element) does not refer to a valid Telescope metadata field, refers to a
Telescope metadata field that the logged-in user does not have permission to see and edit, or refers to one of
the ‘predefined’ or ‘rendition’ metadata fields which are marked as ‘read-only’.

SOAP fault codes are as follows:

 TSWeb-0005 No MIMiX string has been provided.

 TSWeb-0022 Failed to parse MIMiX string.

 TSWeb-0001 No record ID value has been provided.

 TSWeb-0002 The record ID: {0} is invalid.

 TSWeb-2013 The field: {0} is not found or not visible for the user: {1}.

 TSWeb-2037 The field: {0} is not editable for the user: {1}.

public NPSMap SetDataMultiple) String in_strMimix)

throws Throwable
Integration Broker SDK Manual 89

 TSWeb-0031 The rendition ID: {0} is invalid.

 TSWeb-2012 The rendition ID {0} is not visible for the user: {1}.

 TSWeb-0032 The viewex_type: {0} does not match the other extended view elements in the MIMiX data.
90 API Methods: Metadata Methods

Chapter 10: API Methods: Messaging
Methods

These messaging methods allow a calling application to access, send and change Telescope messages.

In this Section:

 Section 10.1, "DeleteMBMessage," on page 92

 Section 10.2, "GetMBMessageAction," on page 93

 Section 10.3, "GetMBMessageCount," on page 94

 Section 10.4, "GetMBMessageList," on page 95

 Section 10.5, "GetMBVisibleActions," on page 96

 Section 10.6, "ReadMBMessage," on page 97

 Section 10.7, "SendMessage," on page 98

 Section 10.8, "SendMBMessage," on page 99

 Section 10.9, "SendMBApprovalMessage," on page 100
Integration Broker SDK Manual 91

10.1DeleteMBMessage

This method deletes one or more Telescope messages.

Parameters:

 in_seqMessages – A list of the message IDs to be deleted.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void DeleteMBMessage (int[] in_seqMessages)

throws Throwable
92 API Methods: Messaging Methods

10.2GetMBMessageAction

This method is called when the recipient clicks on one of the message action buttons attached to a 'To Do' message. It
sends the message action corresponding to the action button to the Message Broker which in turn performs the action
script attached to the actions table.

Parameters:

 in_iMsgID – The integer message ID of the message whose action is being triggered.

 in_strActionCode – The code name of the message action whose button was clicked by the user.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void GetMBMessageAction (int in_iMsgID,

String in_strActionCode)

throws Throwable
Integration Broker SDK Manual 93

10.3GetMBMessageCount

This method returns the number of sent and received messages currently in the system for a logged-in user, the
number of unread messages, and a total count of messages after a given cutoff date. Messages whose send dates are
later than this value are included in the returned counts, regardless of how many 'real' entries there are in the
M_MESSAGES table. If this value is set to a future date/time, Message Broker will return zero for all counts.

Parameters:

 in_cutoffDate – A date/time giving the earliest send date the caller wants to see in seconds since Jan 1, 1970.

Returns:

A list of all messages with a sent date greater than the cutoff date. Each structure contains the category of messages
(sent/received), the count of unread messages and a total count.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public com.northplains.IDLmodule.MessageBroker.MBMessageCount[]
GetMBMessageCounts

(int in_cutoffDate)

throws Throwable
94 API Methods: Messaging Methods

10.4GetMBMessageList

This method returns the message IDs and header information for the messages in a specified category for the logged-
in user.

Parameters:

 in_lCategory – The desired category of messages to return. Currently supported values are 1 = 'Received
Items', or 2 = 'Sent Items'.

 in_cutoffDate – The earliest sent date the caller wants to see. Only messages whose sent dates are later than
this value are returned, regardless of how many real entries there are in the M_MESSAGES table. The value
should be provided in seconds since Jan 1, 1970.

 in_iSkip – The number of messages to skip in the returned, sorted list of message from the database, before
beginning to return items to the caller. Passing 0 (zero) starts the list at the beginning.

 in_iNumResults – The number of desired result items. Passing 0 (zero) returns all items.

Returns:

Returns a list (sorted by date) of all message headers meeting the criteria. Each structure will contain the message id,
subject, sent date, sender, list of recipients, read flag, and a flag indicating whether the message is a "TO DO"
message.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public com.northplains.IDLmodule.MessageBroker.MBMessageHeader[]
GetMBMessageList

(iint in_lCategory,

int in_cutoffDate,

int in_iSkip,

int in_iNumResults)

throws Throwable
Integration Broker SDK Manual 95

10.5GetMBVisibleActions

This method retrieves all of the message actions (from the M_ACTIONS table) that are visible to the calling user.

Returns:

Returns a list of all visible actions (in a code-name pair) for the logged-in user.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public com.northplains.IDLmodule.MessageBroker.MBActionInfo[]
GetMBVisibleActions

()

throws Throwable
96 API Methods: Messaging Methods

10.6ReadMBMessage

This method returns the full information for a given message.

Parameters:

 in_iMsgID – The requested message’s ID field from the M_MESSAGES table. If a message cannot be
found with this ID, Message Broker will raise an exception.

Returns:

Returns a structure containing the message ID, subject, body, sent date, sender, list of recipients, list of actions
attached if any, (for a TODO message only) and list of attached records.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public com.northplains.IDLmodule.MessageBroker.MBMessageInfo
ReadMBMessage

(int in_iMsgID)

throws Throwable
Integration Broker SDK Manual 97

10.7SendMessage

This call creates a Telescope message and optionally sends an e-mail as well. Attachments are not supported at
present.

If the message or e-mail cannot be sent, or in case of any error including a failure for user privileges, this method
throws an exception. The Telescope message is sent despite a failure to send the e-mail message.

Parameters:

 in_strToUser – A recipient user name. Must have a valid value.

 in_strSubject – Subject of the message. If this value is null, an empty string is used for the subject.

 in_strMsgBody – The message to be sent. If this value is null, an empty message is sent.

 in_bSendEmail š If true, this method tries to send e-mail to the recipient by using a SMTP host provided for
the application instance as a command line argument for WOSMTPHost. WebObjects uses a default SMTP
host with the name "SMTP" if no command line argument is provided for WOSMTPHost. The default
SMTP host is not accepted by this method and the e-mail is rejected. In Telescope version 8.2 and later the
use of this parameter has no effect on sending e-mails. It has been kept only for compatibility reasons.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void SendMessage (String in_strToUser,

String in_strSubject,

String in_strMsgBody,

boolean in_bSendEmail)

throws Throwable
98 API Methods: Messaging Methods

10.8SendMBMessage

This method sends a Telescope message. This same method is used for sending reply messages and forwarding a
message.

NOTE: This method supersedes the SendMessage method. The original method continues to be supported but is
deprecated in the future versions of the Integration Broker SDK.

Parameters:

 in_arRecipients – A list of Telescope user names to send the message to.

 in_strSubject – A string representing the subject line of the message. This string can be empty.

 in_strMsgText – A string containing the full text of the message. Line breaks in the message is in the Win-
dows style (CR + LF).

 in_seqActions – A list of valid message action code names, which the sender has permission to see. Setting
this value turns the message into a 'To Do' message. Message Broker will raise an exception if an attempt is
made to pass message actions to the MBSendMessage call when the MSGTODO license does not exist on
the Session Broker.

 in_seqAttachments – A list of record_ids for documents which should be attached to the message.

Returns:

Returns the ID of the message sent.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public int SendMBMessage (String[] in_arRecipients,

String in_strSubject,

String in_strMsgText,

String[] in_seqActions,

int[] in_seqAttachments)

throws Throwable
Integration Broker SDK Manual 99

10.9SendMBApprovalMessage

This method sends a Telescope approval message. This is a message which is generated automatically by Telescope
when a user needs approval to perform an action, either because of their permissions, or because of a Functional Rule
returning the needs approval result code.

Parameters:

 in_seqRecipients – A list of Telescope user names to send the message to.

 in_strSubject – A string representing the subject line of the message. This string can be empty.

 in_strMsgText – A string containing the full text of the message. Line breaks in the message is in the Win-
dows style (CR + LF).

 in_seqAttachments – A list of record_ids for documents which should be attached to the message.

Returns:

Returns the ID of the message sent.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public int SendMBApprovalMessage (String[] in_seqRecipients,

String in_strSubject,

String in_strMsgText,

int[] in_seqAttachments)

throws Throwable
100 API Methods: Messaging Methods

Chapter 11: Search Methods

You can use the Integration Broker SDK to perform two types of searches: advanced searches based on metadata
values and Tree searches that have been predefined in Telescope. Access to the Tree Broker is provided through the
Integration Broker SOAP API as a thin layer over the Tree Broker IDL. For more information about creating Tree
searches, see the Telescope Administrator's Guide.

In this Section:

 Section 11.1, "Search," on page 102

 Section 11.2, "Example of Constructing a Query in NPSMap Form," on page 103

 Section 11.3, "GetTBCriteriaValues," on page 104

 Section 11.4, "GetTBLevelData," on page 105

 Section 11.5, "GetTBSearchNames," on page 106
Integration Broker SDK Manual 101

11.1 Search

This method searches the Telescope database, based on a set of criteria, and returns the found records. The
authenticated user's where clause is applied to the search results.

NOTE: SOAP API search queries use SQL queries against the Telescope database (rather than Solr queries against
the Solr database). To prevent timeouts and improve performance, you may want to limit the number of results
returned by SQL queries. To do this, use the max_results field in the users table (see the Database Internals guide for
details).

Parameters:

 in_arCriterias – An array of NPSMap objects with the following keys and values to build the SQL criteria to
be executed against the database:

 TABLE_NAME or tableName – the name of the table. If empty, assumes EDITORIAL entity.

 COLUMN_NAME or columnName – the name of the column to execute the search for (Manda-
tory).

 DATA_TYPE or dataType – the Telescope data type of the column as defined in the EXTRA_COL-
UMNS table (Optional).

 OPERATOR or operator – operator selected for search such as LIKE, IS, IS NOT etc. (Mandatory).

 CONJUNCTION or conjunction – the conjunction selected in case of multiple criteria such as OR or
AND (Optional).

 OPEN or open – represents an open bracket "(" (Optional). Set to "true" to put an open bracket
before this criteria; otherwise set to "false".

 CLOSED or closed - represents a close braket ")" (Optional). Set to "true" to put an close bracket
after this criteria; otherwise set to "false".

 VALUE or value – the value entered by the user. NULL used if empty.

Returns:

An array of integers representing the record IDs of found assets.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public int[] Search (NPSMap[] in_arCriterias)

throws Throwable
102 Search Methods

11.2 Example of Constructing a Query in NPSMap
Form
If the user wants to search for ('a' or 'b') in the Title field and 'c' in the Notes field, the application will need to create
an array of 3 NPSMap objects, as illustrated in the structures below.

NOTE: The following order is important to keep!

NPSMap[1]: Part one of the query: "Editorial.Title IS ('a' OR"
Name = TABLE_NAME, Value = Editorial
Name = COLUMN_NAME, Value = 'Title'
Name = OPERATOR, Value = 'Is'
Name = OPEN_PAREN, Value = 'true'
Name = CONJUNCTION, Value = 'OR'
Name = VALUE, Value = 'a'

NMPSMap[2]: Part one of the query: "Editorial.Title IS 'b') AND"
Name = TABLE_NAME, Value = Editorial
Name = COLUMN_NAME, Value = 'Title'
Name = OPERATOR, Value = 'Is'
Name = CONJUNCTION, Value = 'AND'
Name = CLOSE_PAREN, Value = 'true'
Name = VALUE, Value = 'b'

NPSMap[3]: Part one of the query: "Editorial.Notes IS 'c'"
Name = TABLE_NAME, Value = Editorial
Name = COLUMN_NAME, Value = 'Notes'
Name = OPERATOR, Value = 'Is'
Name = VALUE, Value = 'c'
Integration Broker SDK Manual 103

11.3 GetTBCriteriaValues

This method gets the tree models for the current user from the Tree Broker.

Parameters:

 in_wsSearchName – The tree search name for which we request the data.

 in_seqLevelValues – An array of String values (catalog names), which is the actual "path" of values con-
verted to a String as the current user would "descend" from the top level of the search down to the current
level for which the data is searched.

Returns:

Returns a list of structures from the Tree Broker containing the search information (field name, value, conjunction)
ready to be passed to the Integration Broker Search() call.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public NPSMapArray GetTBCriteriaValues (String in_wsSearchName,

String[] in_seqLevelValues)

throws Throwable
104 Search Methods

11.4 GetTBLevelData

This method returns the data from the Tree Broker for a given tree search for the current user.

Parameters:

 in_wsSearchName – The tree search name.

 in_seqLevelValues – An array of String values (catalog names), which is the actual "path" of values con-
verted to String as the current user would "descend" from the top level of the search down to the current
level for which the data is searched.

Returns:

Returns a structure containing information about the current level – whether the level is a leaf (terminal) level,
whether is informational only or participates in the generated search criteria, and a list of possible nodes to be
displayed to the search level.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public NPSLevelData GetTBLevelData (String in_wsSearchName,

String[] in_seqLevelValues

throws Throwable
Integration Broker SDK Manual 105

11.5 GetTBSearchNames

This method gets a list of the available tree search names for the logged-in user.

Returns:

Array tree search names.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public String[] GetTBSearchNames (

throws Throwable
106 Search Methods

Chapter 12: User Maintenance

The SOAP API includes methods for creating and maintaining users, and for determining user visibility permissions.

To make the visibility permissions (required part of the administration of the catalog and message features) explicit in
the Integration Broker API, two "enumerate" calls allow the caller to determine the visible groups and users available
to the logged-in user.

In this Section:

 Section 12.1, "EnumerateGroups," on page 108

 Section 12.2, "EnumerateUsers," on page 109

 Section 12.3, "IsValidUser," on page 110

 Section 12.4, "CreateUser," on page 111

 Section 12.5, "DeleteUser," on page 112

 Section 12.6, "UpdateUserPassword," on page 113
Integration Broker SDK Manual 107

12.1 EnumerateGroups

This method returns a list of all of the user groups visible to the logged-in user.

Returns:

An array of groups to the logged-in user based on the VIEW_GROUPS table.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public String[] EnumerateGroups (

throws Throwable
108 User Maintenance

12.2 EnumerateUsers

This method returns a list of all of the users visible to the logged-in user.

Returns:

Returns a list of structures containing the information for each user visible to the logged-in user. The key values for
each map are the same as the database column names from the Telescope USERS table, and each map will contain
keys for every Telescope-defined column in the users table (that is, any fields manually added to the users table that
are not defined in the Telescope database design documentation will not be included).

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public NPSMapArray EnumerateUsers (

throws Throwable
Integration Broker SDK Manual 109

12.3 IsValidUser

Parameters:

 in_strUserName – A String object representing the user name to be looked up in the database.

Returns:

Returns a boolean value: true if the user exists, and false otherwise.

public boolean IsValidUser (String in_strUserName)
110 User Maintenance

12.4 CreateUser

This call creates a new user in the Telescope users table. The new user's permissions are determined by the group they
are created in. Only a user authenticated as an administrator can make this call. This method can be used only inside
response-request loop.

Parameters:

 in_strUserName – A user name for the new user.

 in_strPassword – A password string for the new user; if this value is null or an empty string, an empty
password is created for the new user.

 in_strGroupName – A group name to be used for the new user; if this value is null or an empty string, a new
user is created in the Default group. If the group with this value is not found, a template group name, defined
in the SOAPParams.plist, is used as a new user group.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void CreateUser (String in_strUserName,

String in_strPassword,

String in_strGroupName)

throws Throwable
Integration Broker SDK Manual 111

12.5 DeleteUser

This method deletes a user from the users table in the Telescope database. Only users authenticated as administrators
can perform this action.

Parameters:

 in_strUserName – The user name to be deleted.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void DeleteUser (String in_strUserName)

throws Throwable
112 User Maintenance

12.6 UpdateUserPassword

This method modifies the password associated with a given user name. Unless the logged-in user has administrative
privileges, they can update only his or her own password. If the call is made to update another user password, the
logged-in user must have administrative privileges.

Parameters:

 in_strForUserName – The user name of the user whose password is updated.

 in_strNewPassword – A new password for the user. If this value is null or an empty string, an empty
password is created.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void UpdateUserPassword (String in_strForUserName,

String in_strNewPassword)

throws Throwable
Integration Broker SDK Manual 113

114 User Maintenance

Chapter 13: Version Control Methods

These methods allow the calling application to create and maintain asset versions.

In this Section:

 Section 13.1, "CreateDerivativeFromVersion," on page 116

 Section 13.2, "DeleteVersion," on page 117

 Section 13.3, "DownloadVersion," on page 118

 Section 13.4, "DownloadVersionStart," on page 119

 Section 13.5, "DownloadVersionStatus," on page 120

 Section 13.6, "GetAssetVersions," on page 121

 Section 13.7, "PromoteVersion," on page 122
Integration Broker SDK Manual 115

13.1 CreateDerivativeFromVersion

This method creates a derivative from the current version.

Parameters:

 in_iVersionID – The ID of the version used to create a new asset.

 in_bCopyMetadata – A flag indicating whether the metadata is gathered from the version's master record or
from the in_strMimiXMetadata parameter representing the MIMiX data; if true, MIMiX data is ignored and
the data is taken from the parent asset based on the ed_versions.record_id value.

 in_strMimiXMetadata – Metadata for the version if in_bCopyMetadata is false.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void CreateDerivativeFromVersion (int in_iVersionID,

boolean in_bCopyMetadata,

String in_strMimiXMetadata)

throws Throwable
116 Version Control Methods

13.2 DeleteVersion

This method deletes the given version of an asset.

Parameters:

 in_lVersionID – The version ID of the ED_VERSIONS record that is deleted.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void DeleteVersion (iint in_lVersionID)

throws Throwable
Integration Broker SDK Manual 117

13.3 DownloadVersion

This method calls DLManager to download a specific version of an asset.

Parameters:

 in_nVersionId – The version_id from the ED_VERSIONS table of the asset to download.

 in_bIsMacBinary – Set to ‘True’ to download a file in Mac binary format; this flag applies to all the files in
the in_arAssetsData array.

 in_bZipSingle – Set to ‘True’ to zip a file.

Returns:

 An NPSMap object with the following keys:

DOWNLOAD_URL – A URL to the downloaded files

TIMESTAMP – A String value of the number of seconds elapsed since Jan, 1st, 1970 12:00 AM UTC

ERRORS – If there were any errors returned by DLManager and gracefully handled by this method, the
return value will contain one more ERRORS keys containing an array (ArrayList) of strings that describe
the errors. In case of a fatal error returned by DLManager, the return value will contain null value for the key
DOWNLOAD_URL.

If there were no errors during the download process, the ERRORS key still might be present with a null
value or an empty array.

Throws:

 java.lang.Throwable – In case of errors, including validation errors. For more information, see Exception
Handling.

NOTE: No exception is thrown if DLManager is unable to download the file(s). Such errors are returned as a part of
the return value in the ERRORS key.

public NPSMap DownloadVersion (Integer in_nVersionId,

boolean in_bIsMacBinary,

boolean in_bZipSingle)

throws Throwable
118 Version Control Methods

13.4 DownloadVersionStart

This method calls DLManager to asynchronously download a specific version of an asset.

Parameters:

 in_nVersionId – The version_id from the ED_VERSIONS table for the asset to download.

 in_bIsMacBinary – Set to ‘True’ to download a file in Mac binary format.

 in_bZipSingle – Set to ‘True’ to zip a file.

Returns:

A HashMap object with the key DOWNLOAD_KEY that contains a key identifying the current download. If there
were any errors returned by DLManager and gracefully handled by this method, the return value will contain one
more ERRORS keys containing an array (ArrayList) of strings that describe the errors. In case of a fatal error
returned by DLManager, the return value will contain null value for the key DOWNLOAD_URL.

If there were no errors during the download process, the ERRORS key still might be present with a null value or an
empty array.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

NOTE: No exception is thrown if DLManager is unable to download the file(s). Such errors are returned as a part of
the return value for the key ERRORS.

public NPSMap DownloadVersionStart (Integer in_nVersionId,

boolean in_bIsMacBinary,

boolean in_bZipSingle)

throws Throwable
Integration Broker SDK Manual 119

13.5 DownloadVersionStatus

This method returns the status of a downloading asset version from the download manager.

Parameters:

 in_strDownloadKey – A string value of the key for the download operation, obtained as the result returned
from a DownloadStart call.

Returns:

Returns a HashMap similar to the DownloadStatus method.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

NOTE: No exception is thrown if DLManager is unable to download the file(s). Such errors are returned as a part of
the return value in the ERRORS key.

public NPSMap DownloadVersionStatus (String in_strDownloadKey)

throws Throwable
120 Version Control Methods

13.6 GetAssetVersions

This method gets a list of all of the versions associated with an asset.

Parameters:

 in_iRecordID – The record ID of the asset whose versions are being requested. If this value doesn't refer to a
valid asset in the database, or refers to an asset that the currently logged-in user cannot see, this method will
raise a SOAP fault.

Returns:

Returns a list of NPVersInfo structures (mirroring the ED_VERSIONS table) containing the information about all
versions associated with an asset. If the asset has no versions, the method will return normally with an empty array.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public NPSVersInfo[] GetAssetVersions (int in_iRecordID)

throws Throwable
Integration Broker SDK Manual 121

13.7 PromoteVersion

This method promotes the version associated with the given version ID.

Parameters:

 in_lVersionID – The version ID of the ED_VERSIONS record to be promoted.

Throws:

 java.lang.Throwable – In case of errors, including validation errors.

public void PromoteVersion (int in_lVersionID)

throws Throwable
122 Version Control Methods

Chapter 14: UI Service

This section provides information about the UI Service:

 Section 14.1, "Overview," on page 124

 Section 14.2, "UI Service Actions," on page 125
Integration Broker SDK Manual 123

14.1 Overview
The UI Service allows user interface elements to be presented or provided by Telescope. This topic explains the UI
Service direct action and its action codes.

A direct action in Telescope provides the functionality required by the UI Service. This direct action is called by a
URL interface, with all the necessary parameters passed using the Get or Post method. The calling application is
responsible for passing parameters that include:

 an ACTION that tells Telescope what action to perform

 CMDDATA for the command, which differs from action to action

 a RETURL to callback when the action is complete, usually to pass data back to the caller when appropriate

Below is an example of a URL complete with all required parameters using the Get method:

http://www.hostserver.com/scripts/WebObjects.dll/tsweb. woa/3/wa/services/
uiservice?wosid=ABCDEFGHIJK0123456789
&action=3&cmddata=FIELD&returl=http://www.return.net/blah
124 UI Service

14.2 UI Service Actions

14.2.1 Home Page
Takes the user to their home page in Telescope.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/uiservice?wosid=ABCDEF&action=

14.2.2 Browse and Select Files
Opens the passed-in search page, lets the user search and browse the returned results. A button in the standard
Telescope result set page is used to return check-boxed assets to the caller.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/
uiservice?wosid=ABCDEF&action=1&cmddata=FIELD&returl=http://www.return.net/blah

14.2.3 Search and Return Result Set
Opens the passed-in search page, lets the user search and browse the returned results. A button in the standard
Telescope.web result set page is used to return the SQL used to arrive at the results to the caller.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/
uiservice?wosid=ABCDEF&action=2&cmddata=BROWSE&returl=http://www.return.net/blah

Action CMDDATA Parameter (optional) RETURL Parameter

0 Go to home page <IGNORED> <IGNORED>

Action CMDDATA Parameter (optional) RETURL Parameter

1 Browse and
select files

{ FIELD | KEYWORD | BROWSE
| FORM | CONTENT }

Called with record ID, file type, and file
name values appended.
Integration Broker SDK Manual 125

14.2.4 Return Thumbnail
Returns the thumbnail JPEG data for the passed-in record ID. This UI Service call can be embedded in an HTML
 tag.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/
uiservice?wosid=ABCDEF&action=3&cmddata=1234

14.2.5 Return Rendering
Returns the file data directly in the response. This UI Service call can be embedded in an HTML tag.
CMDDATA contains record ID, rendition ID and conversion string as shown below.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/
uiservice?wosid=ABCDEF&action=4&cmddata=345r1%20JPEG(DPI=72)

14.2.6 Display One Asset
Displays the standard Telescope document info window for the passed-in asset. The user can see document
information, extended view, history, notes, etc. depending on their privilege.

Action CMDDATA Parameter (optional) RETURL Parameter

2 Search and
return result
set

{ FIELD | KEYWORD | BROWSE
| FORM | CONTENT }

Called with search SQL appended.

Action CMDDATA Parameter (optional) RETURL Parameter

3 Return
thumbnail

The record ID of the asset. <IGNORED>

Action CMDDATA Parameter (optional) RETURL Parameter

4 Return asset
rendering

A record ID/rendition ID pair that
identifies the asset rendition to
act on.

<IGNORED>
126 UI Service

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/
uiservice?wosid=ABCDEF&action=5&cmddata=1234

14.2.7 Display Multiple Assets
Displays the default results page containing the assets representing the record IDs passed to the action. The result set
is subject to standard where clause limitations, therefore, any record IDs that are not visible to the current user are
removed from the displayed result set. The operations available to the user in the results view are based on the user’s
privileges. This view is the same one presented to the user if logging in manually.

This action is called like all other UI Service actions, by using the UI Service endpoint URL. An example URL used
to call this service may look as follows:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/
uiservice?wosid=ABCDEF&action=6&cmddata=15687;15987;18954

In the event that the URL exceeds 255 bytes due to the number of record IDs being passed, a form should be used by
the client of this service using the POST method. Below is an example of how to construct a form to pass in the same
values passed using the URL in the previous example:

<form method="post" action="http://www.host.com/scripts/

WebObjects.dll/tsweb.woa/3/wa/services/

uiservice?wosid=ABCDEF">

<input type="hidden" name="action" value="6">

<input type="hidden" name="cmddata"

value="15687;15987;18954">

</form>

When the record IDs are displayed using the new service action, the last search results stored in the user session are
updated with the current results.

Action CMDDATA Parameter (optional) RETURL Parameter

5 Display One
Asset

The Record ID of the asset <IGNORED>

Action CMDDATA Parameter (optional) RETURL Parameter

6 Display
Multiple Assets

<list of semi-colon delimited
record IDs>

e.g. "15687;15987;18954"

<IGNORED>
Integration Broker SDK Manual 127

14.2.8 Search Action
This action invokes a search action. It has no parameters and returns nothing.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/uiservice?wosid=ABCDEF&action=7

14.2.9 File Drop Applet
This action renders the file drop applet for file ingestion. It has no parameters and returns nothing.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/uiservice?wosid=ABCDEF&action=8

14.2.10Display Assets on Home Page
This action displays assets on the home page. It has no parameters and returns nothing.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/uiservice?wosid=ABCDEF&action=9

14.2.11Display Asset Creation Screen
This action is used for rendering the metadata screen for the Telescope Uploader. It has no parameters and returns
nothing.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/uiservice?wosid=ABCDEF&action=10

Action CMDDATA Parameter (optional) RETURL Parameter

7 Search action <NOT USED> <IGNORED>

Action CMDDATA Parameter (optional) RETURL Parameter

8 File drop applet <NOT USED> <IGNORED>

Action CMDDATA Parameter (optional) RETURL Parameter

9 Display action <NOT USED> <IGNORED>

Action CMDDATA Parameter (optional) RETURL Parameter

10 Display Asset
Creation Screen

<NOT USED> <IGNORED>
128 UI Service

14.2.12Display Asset Search Results
This action is used to display asset search results. It has no parameters and returns nothing.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/uiservice?wosid=ABCDEF&action=11

14.2.13Display Catalog
This action is used for displaying catalogs. It has no parameters and returns nothing.

Example URL:

http://www.host.com/scripts/WebObjects.dll/tsweb.woa/3/wa/services/uiservice?wosid=ABCDEF&action=12

Action CMDDATA Parameter (optional) RETURL Parameter

11 Display Asset
Search Results

<NOT USED> <IGNORED>

Action CMDDATA Parameter (optional) RETURL Parameter

12 Display Catalog <NOT USED> <IGNORED>
Integration Broker SDK Manual 129

130 UI Service

Chapter 15: Reference

This following sections includes reference materials for Exception Handling and SOAP fault codes:

 Section 15.1, "Exception Handling," on page 132

 Section 15.2, "SOAP Error Codes," on page 133
Integration Broker SDK Manual 131

15.1 Exception Handling
Any exceptions thrown by a web service are passed over the wire as SOAP faults. A SOAP fault typically contains
the following:

 Fault Code: Identifier for the fault; for more information see SOAP Fault Codes

 Fault String: Short description of the fault

 Fault Actor: Entity that raised the fault

 Fault Details: Detailed description of the fault

Any error or exception that occurs in a method is presented as a SOAPException with the appropriate fault code and
fault string and returned to the consumer as part of the SOAP response. It is up to the client of the web service to
extract the fault from the SOAP response to notify the user.

All of the fault codes and strings (error messages) returned to the client as a result of incorrect information or failed
functional rules are taken from a configuration file (SOAPErrorMessages.strings).

There are two kinds of exceptions that might be sent to the consumer as SOAP faults: Handled (user exceptions) and
Unhandled (system/run-time exceptions). Handled exceptions are thrown by the application code intentionally if a
validation fails or if the information provided is invalid. Unhandled exceptions are unanticipated run-time exceptions
that may occur in the application.

To distinguish Handled from Unhandled exceptions, a fault code can hold a special notation that tells the consumer
that the fault was raised as part of the user's input, for example. Fault codes are customized to contain a notation like
TSWeb-<<error code>>, where error code is the type of exception. If any fault is received with this notation, it is
considered a User Exception and the fault string associated with the fault contains the actual error message.

Unhandled exceptions are processed by the SOAP engine, which packages the exception in its own format and can be
considered a general system exception.
132 Reference

15.2 SOAP Error Codes
Errors caused as a result of SOAP are written to the file SOAPMessages.plist, located in the
tsweb.woa\Contents\Resources directory. SOAP faults are categorized as either User errors, Database
errors, Validation errors, System errors, or Broker errors. Each error consists of a fault code and a string that describes
the error.

NOTE: Error codes should not be changed or removed. The descriptions may be customized to suit your needs, as
long as the meaning of the original string is retained. Only new error codes can be added.

15.2.1 User Errors
User errors occur as a result of invalid method calls (for example, wrong type of parameter, missing or null parameter
values, missing or invalid values).

The following list shows original error codes shipped with the product:

0000 = "Your session has expired or invalid. Please login to use the service.";

0001 = "No record id value has been provided.";

0002 = "The record id: {0} is invalid.";

0003 = "No rendition id value has been provided.";

0004 = "No user name has been provided.";

0005 = "No MIMiX string has been provided.";

0006 = "No template name has been provided.";

0007 = "No template is found for the template name: {0} or template is empty.";

0008 = "No field name value has been provided.";

0009 = "No recipient name has been provided.";

0010 = "No asset data has been provided.";

0011 = "No search criteria have been provided.";

0012 = "No column name has been specified for criteria: {0}.";

0013 = "No URLs have been provided for ingest process.";

0014 = "Invalid syntax for URI: {0}.";

0015 = "URI: {0} does not contain a valid file name";

0016 = "The username and password entered are not valid. Please try again.";

0017 = "Unable to find a connection with name {0}.";

0018 = "Invalid date format. The date value must be in the format: {0}.";

0019 = "The value: {0} must be of type Integer.";
Integration Broker SDK Manual 133

0020 = "The value: {0} must be of type Decimal.";

0021 = "The value: {0} must be of type Real.";

0022 = "Failed to parse MIMiX string.";

0023 = "Your where clause contains parameter replacements that cannot be resolved.\\nThis must be corrected before
you will be permitted to log in.";

0024 = "There was an error contacting the Session Broker. Logins are disabled until the Session Broker is back in
service.";

0025 = "The {0} user class is not licensed at this installation of TeleScope.web. This login has been disabled until an
appropriate license is obtained.";

0026 = "There is already 1 {0} user logged in. Please try again later.";

0027 = "There are already {0} {1} users logged in. Please try again later.";

0028 = "License pool {0} is not recognized by the Session Broker. This login has been disabled until an appropriate
license pool is set.";

0029 = "This Content Consumer user record has been tampered with in the database. Please contact your system
administrator.";

0030 = "You currently have more Content Creator users logged in than your license allows. You will not be allowed
to login until someone else logs out.";

0031 = "There are more Content Creator users listed in this database than are allowed by your software license.
Please contact your system administrator.";

0032 = "The provided url at index {0} is empty.";

0034 = "Could not find or instantiate the authentication provider class: {0}.";

0035 = "Invalid or empty username was returned by provider.";

0036 = "No sufficient information has been provided to upload a file.";

0037 = "Missing or invalid version";

0038 = "Version name cannot be longer than 16 characters.";

0039 = "Version description cannot be longer than 255 characters.";

0040 = "MIMiX xml string doesn't contain any assets.";

0041 = "Record ID: {0} has more than one occurrence in the MIMiX string.";

0042 = "Version ID must be greater than 0.";

0043 = "No version found for the version id: {0}.";

0044 = "No versions found for record id: {0}";

0045 = "Missing or invalid parameter {0}";

0046 = "Authentication failed.";

0047 = "No file broker url has been provided.";
134 Reference

0048 = "Invalid file broker url: {0}";

0049 = "No attached data to request is found.";

15.2.2 Database Errors
Database errors occur as a result of database transactions (for example, unsupported data types or fields, failure to
determine a group for the user).

The following list shows original error codes shipped with the product:

1001 = "Unable to create a user: {0}. Error: {1}.";

1002 = "Failed to determine a group for the user: {0}.";

1003 = "Unable to determine the data type for table name: {0} and column name: {1}.";

1004 = "Unable to convert data type: {0} into java.sql.Types.";

1005 = "Unable to convert value: {0} for java.sql.Types data type: {1}.";

1006 = "The data type value in the extra_columns table for the field: {0} is not defined.";

1007 = "The Telescope data type {0} is not supported.";

1008 = "The field: {0} is not supported.";

1009 = "Failed to create a download_queue record for record id: {0} and rendition id: {1}.";

1010 = "More than one record has been updated in the database for record id: {0}, rendition id: {1}, table name: {2},
column name: {3}.This is not allowed. The transaction has been rolled back.";

1011 = "Invalid data type for criteria: {0}.";

1012 = "Failed to get primary keys.";

1013 = "The given site name does not exist in the 'sites.plist' file.";

1014 = "There are no visible connections.";

15.2.3 Validation Errors
Validation errors occur when the Ingest Broker attempts to verify that the requested operation is allowed (for
example, a user attempts to delete an asset without the required privilege).

The following list shows original error codes shipped with the product:

2001 = "The user {0} has no import privileges.";

2002 = "The privileges for the user: {0} do not include creating a new user in the group: {1}.";

2003 = "The privileges for the user: {0} do not include deleting an asset.";

2004 = "The privileges for the user: {0} do not include checking out an asset.";

2005 = "The privileges for the user: {0} do not include sending a message.";

2006 = "The privileges for the user: {0} do not include downloading files.";
Integration Broker SDK Manual 135

2007 = "There are no visible assets for the user: {0}.";

2008 = "The privileges for the user: {0} do not include viewing the record id: {1}.";

2009 = "The privileges for the user: {0} do not include viewing the rendition id: {1}.";

2010 = "The user: {0} does not have administrative privileges.";

2011 = "There are no visible renditions for the user: {0}.";

2012 = "The rendition id {0} is not visible for the user: {1}";

2013 = "The field: {0} is not found or not visible for the user: {1}.";

2014 = "The asset with the record id: {0} is checked out by another user and cannot be deleted.";

2015 = "The asset for record_id: {0} is already checked out.";

2016 = "The asset for record id: {0} is not checked out.";

2017 = "The asset for record id: {0} is checked out by another user.";

2018 = "No asset is found for record_id: {0}.";

2019 = "Failed to execute functional rule with the error message: {0}.";

2020 = "No user record found for name: {0}.";

2021 = "The user name: {0} exceeds 32 characters, maximum allowed for the user name to be created.";

2022 = "The user name: {0} already exists";

2023 = "A group name with the same name as user name: {0} already exists.";

2024 = "No template group name is specified in the SOAPParams.plist file.";

2025 = "The recipient: {0} is not found.";

2026 = "Unable to send email. SMTP host is invalid or not defined.";

2027 = "Unable to send email to: {0}, because recipient does not have a valid email address.";

2028 = "Not all of the requested assets are visible for the user: {0}. Non-visible assets cannot be downloaded.";

2029 = "Could not get data from the doc_renditions table because the rendition id was not provided.";

2030 = "Unable to determine data type for criteria: {0}.The criteria is invalid or the field is not visible for the user.";

2031 = "Challenge Forms are not supported in functional rules using the SOAP API";

2032 = "Some of the assets are not visible for the user: {0} and cannot be downloaded.";

2033 = "The privileges for user: {0} do not include deleting a user: {1}.";

2034 = "The privileges for user: {0} do not include updating the password for user: {1}.";

2035 = "The privileges for user: {0} do not include any valid file migration policy.";

2036 = "The path {0} does not refer to a valid catalog, or the user does not have visibility over the catalog.";
136 Reference

2039 = "The privileges for user: {0} do not include the ability to access the properties of catalog {1}. Only the
owning user (or an administrator who has user group visibility over the owning user) can access a catalog’s
properties.";

2040 = "One or more of the passed in record_id values refer to invalid asset(s), or asset(s) that the logged-in user
cannot see.";

2041 = "The permissions for user {0} do not include the ability to edit the catalog {1}.";

2042 = "The new path {0} is a subpath of the intial path {1}.";

2043 = "The user {0} does not have visibility over catalog at the new path {1}, or the catalog at path {1} does not
allow nesting.";

2044 = "The catalog cannot be moved to the new nesting level";

2045 = "The catalog name {0} already exists at this nesting level.";

2046 = "One or more of the passed in record_id values refer to invalid asset(s), assets(s) not contained whithin the
given catalog, or asset(s) that the logged-in user cannot see.";

2047 = "The supplied password does not match the one associated with the catalog.";

2050 = "The ACL contains entries that refer to invalid user(s), or user(s) or group(s) that the logged-in user cannot
see.";

2051 = "The privileges for user {0} do not include the ability to create shared catalogs.";

2052 = "The permissions for user {0} do not include the ability to delete the catalog {1}. Only the owning user (or an
administrator who has user group visibility over the owning user) can delete a catalog.";

2053 = "There is no version available for the version_id {0}.";

2054 = "The privileges for the user: {0} do not include checking in an asset.";

2055 = "Some of the record_ids are invalid or not visible for the user: {0}.";

2056 = "Checkouts record doesn't have corresponding doc_renditions record.";

2057 = "Invalid doc_renditions record for record id: {0} and rendition id: {1}";

2058 = "No File Broker with name {0} was found on the Naming Service.";

2059 = "No file was found for current doc_rendition.file_location. Record id: {0}, rendition id: {1}.";

2060 = "Unable to determine a new version file name for original file name: {0}.";

2061 = "File broker failed to rename file.";

2062 = "Failed to copy file to File Broker.";

2063 = "The file: {0} has been already checked in.";

2064 = "The privileges for the user: {0} do not include modifying metadata.";

2065 = "The field: {0} is not editable for the user: {1}.";

2066 = "The privileges for the user: {0} do not include seeing versions.";
Integration Broker SDK Manual 137

2067 = "The settings for your site do not include usage of the {0} conversion type code.";

2068 = "The asset for record id: {0} does not have viewex data type value defined.";

2069 = "The privileges for user: {0} do not include import with no migration policy.";

2070 = "The privileges for user: {0} do not include usage of the migration policy {1}.";

15.2.4 System Errors
System errors occur as a result of a system component being unavailable or not able to fulfill the request (for
example, DLManager is not available, or is unable to create a directory).

The following list shows original error codes shipped with the product:

3001 = "Download Manager is not available. Please verify that the Download Manager is running and accessible.";

3002 = "Unable to create a directory: {0}.";

3003 = "Unable to create a unique temporary directory for ingest. The directory: {0} already exists.";

3004 = "Unable to create a unique temporary directory: {0} for ingest.";

3005 = "Unable to get file from: {0}. Error: {1}.";

3006 = "Failed to download file(s). Error: {0}.";

3007 = "Unable to send email to user: {0}. Error: {1}.";

3008 = "Invalid response recieved from the Download Manager. Please contact system administrator.";

3009 = "The administration settings, required to upload files, are not presently set for this database. Please contact
your system administrator.";

3010 = "The supplied list of record_id values is too large.";

15.2.5 Broker Errors
Broker errors occur when using the services of file brokers during ingest and download operations (for example, the
broker is unable to upload a file, or unable to create a file location for a file).

The following list shows original error codes shipped with the product:

4001 = "Unable to upload file: {0} to the file broker for file location: {1}.";

4002 = "Unable to create file location for file: {0}.";

4003 = "Failed to connect to the Ingest Broker.";

4004 = "An error occurred while contacting the Ingest Broker. Error: {0}";

4005 = "Your current Ingest Broker session is invalid - please disconnect and login again. If the problem persists,
please contact your system administrator.";

4006 = "The Ingest Broker has failed to parse the MIMiX data - please retry the operation. If the problem persists,
please contact your system administrator.";
138 Reference

4007 = "The File Migration Policy you selected is invalid – please retry the operation. If the problem persists, please
contact your system administrator.";

4008 = "The file {0} does not exist or cannot be opened.";

4009 = "The file location specified in the selected File Migration Policy is incorrect – please retry the operation using
another policy. If the problem persists, please contact your system administrator.";

4010 = "Your current session is invalid - please disconnect and login again. If the problem persists, please contact
your system administrator.";

4011 = "Your current session is invalid - please disconnect and login again. If the problem persists, please contact
your system administrator.";

4012 = "Your request cannot be found by the Ingest Broker – please retry the operation. If the problem persists, please
contact your system administrator.";

4013 = "The current response has indicated an invalid file ordinal – please retry the operation. If the problem persists,
please contact your system administrator.";

4014 = "You don’t have sufficient privileges to execute this operation. Please contact your system administrator.";

4015 = "The rendition you are trying to attach already exists.";

4016 = "The asset is no longer valid in the TeleScope database – please refresh your catalog and retry the operation
using a different asset. If the problem persists, please contact your system administrator.";

4017 = "An unexpected call was encountered by the Ingest Broker. Please contact your system administrator.";

4018 = "The Ingest Broker returned invalid request id: {0}";

4019 = "The Ingest Broker returned the following errors: {0}";

4020 = "The Message Broker returned the following errors: {0}";

4021 = "One or more users in the recipients list are not valid TeleScope user_name values from the users table.";

4022 = "The passed-in message ID was not found in the m_messages table.";

4023 = "The action code name passed in in_strActionCode does not refer to a valid message action code name in the
m_actions table.";

4024 = "This call was made without the MSGTODO license existing in Session Broker.";

4025 = "The Message Broker returned the following errors: {0}";

4026 = "This recipient has opened the message,and the message is no longer a ‘To Do’ message for the current
recipient.";

4027 = "The Message Broker returned the following errors: {0}";

4028 = "The passed-in category ID is not one of the known values.";

4029 = "The Tree Search Broker returned the following errors: {0}";

4030 = "Failed to connect to the File Broker.";
Integration Broker SDK Manual 139

15.2.6 General Errors
The following list shows original error codes shipped with the product:

5001 = "The ingest process has been interrupted. Error: {0}";

5002 = "The checkin process has been interrupted. Error: {0}";

15.2.7 Ingest Process Status Messages
The following list shows original error codes shipped with the product. These error codes apply only to
IngestWithStatus calls.

6000 = "Checking files.";

6001 = "Updating files in db.";

6002 = "Checking for functional rules.";

6003 = "Challenge Form is not supported in SOAP calls.";

6004 = "Cleaning Up Derivatives.";

6005 = "Checking For Approval.";

6006 = "Approval Form is not supported in SOAP calls.";

6007 = "Waiting for file {0} transfer.";

6008 = "Generating Graphics for {0}";

6009 = "Executing functional rule for {0}";

6010 = "Waiting in queue";

6011 = "Ingest Broker is done.";

6012 = "Deleting Temporarily files from the File Broker.";

6013 = "Done deleting temporarily files from the File Broker.";

6014 = "Calling Ingest Broker.";

6015 = "Creating File Broker location for file {0}";

6016 = "Deleting temporarily TSWeb files.";

6017 = "Copying file {0} to file broker.";

6018 = "Copying file {0} to temporary directory.";

15.2.8 Unexpected Errors
The following error code appears for unexpected errors:

9999 = "Unexpected error.";
140 Reference

	User’s Guide
	Contents
	Chapter 1: Integration Broker SDK
	1.1 Introduction
	1.1.1 Why SOAP?

	1.2 Components of SOAP Integration
	1.2.1 Web Services
	1.2.2 SOAP Messages
	1.2.3 RPC-Style Messages
	1.2.4 Elements of a SOAP Message
	1.2.5 Attributes of a SOAP Message
	1.2.6 The SOAP Engine

	Chapter 2: Deploying the Integration Broker
	2.1 Integration Broker Support in Telescope
	2.2 SDK Support Files
	2.3 Sample Client Applications
	2.3.1 Simple Command Line Java Application
	2.3.2 Simple C# Application

	2.4 Working WIth Functional Rules
	2.5 Accessing Telescope
	2.5.1 Passing the Site Parameter When Accessing Telescope
	2.5.2 Calling the Integration Broker
	2.5.3 Functional Rules and the Integration Broker

	Chapter 3: Telescope Hub SOAP API
	3.1 SOAP API Methods Overview

	Chapter 4: Asset Maintenance Methods
	4.1 CheckOut
	4.2 CheckOutStatus
	4.3 CancelCheckOut
	4.4 Checkin
	4.5 CheckinWithData
	4.6 Delete
	4.7 SetThumbnailByCode
	4.8 AttachRendition
	4.9 PopulatePopupValues

	Chapter 5: Download Methods
	5.1 Overview
	5.1.1 Example

	5.2 Getfile
	5.3 Download
	5.4 DownloadStart
	5.5 DownloadStatus
	5.6 DownloadAged
	5.7 DownloadAgedStart
	5.8 DownloadStatus
	5.9 DownloadPageURL

	Chapter 6: API Methods: Catalogs
	6.1 AddToCatalog
	6.2 CreateCatalog
	6.3 EnumerateCatalogs
	6.4 DeleteCatalog
	6.5 GetCatalogAssets
	6.6 GetCatalogProperties
	6.7 RemoveFromCatalog
	6.8 SetCatalogProperties

	Chapter 7: API Methods: Ingestion
	7.1 Overview
	7.2 Ingest
	7.3 GetIngestStatus
	7.4 GetTemplateNames
	7.5 IngestWithTemplate
	7.6 IngestWithData
	7.7 IngestWithTemplateAndData
	7.8 IngestWithStatus
	7.9 IngestWithDataAndStatus
	7.10 GetIngestWithDataStatus

	Chapter 8: Login/Out and Session Maintenance
	8.1 Overview
	8.2 Login
	8.3 LoginWithProvider
	8.3.1 Performing Authentication

	8.4 EnumerateConnections
	8.5 Greeting
	8.6 IsValidSession
	8.7 Logout

	Chapter 9: API Methods: Metadata Methods
	9.1 EnumerateFields
	9.2 GetData
	9.3 GetDataMultiple
	9.4 SetData
	9.5 SetDataMultiple

	Chapter 10: API Methods: Messaging Methods
	10.1 DeleteMBMessage
	10.2 GetMBMessageAction
	10.3 GetMBMessageCount
	10.4 GetMBMessageList
	10.5 GetMBVisibleActions
	10.6 ReadMBMessage
	10.7 SendMessage
	10.8 SendMBMessage
	10.9 SendMBApprovalMessage

	Chapter 11: Search Methods
	11.1 Search
	11.2 Example of Constructing a Query in NPSMap Form
	11.3 GetTBCriteriaValues
	11.4 GetTBLevelData
	11.5 GetTBSearchNames

	Chapter 12: User Maintenance
	12.1 EnumerateGroups
	12.2 EnumerateUsers
	12.3 IsValidUser
	12.4 CreateUser
	12.5 DeleteUser
	12.6 UpdateUserPassword

	Chapter 13: Version Control Methods
	13.1 CreateDerivativeFromVersion
	13.2 DeleteVersion
	13.3 DownloadVersion
	13.4 DownloadVersionStart
	13.5 DownloadVersionStatus
	13.6 GetAssetVersions
	13.7 PromoteVersion

	Chapter 14: UI Service
	14.1 Overview
	14.2 UI Service Actions
	14.2.1 Home Page
	14.2.2 Browse and Select Files
	14.2.3 Search and Return Result Set
	14.2.4 Return Thumbnail
	14.2.5 Return Rendering
	14.2.6 Display One Asset
	14.2.7 Display Multiple Assets
	14.2.8 Search Action
	14.2.9 File Drop Applet
	14.2.10 Display Assets on Home Page
	14.2.11 Display Asset Creation Screen
	14.2.12 Display Asset Search Results
	14.2.13 Display Catalog

	Chapter 15: Reference
	15.1 Exception Handling
	15.2 SOAP Error Codes
	15.2.1 User Errors
	15.2.2 Database Errors
	15.2.3 Validation Errors
	15.2.4 System Errors
	15.2.5 Broker Errors
	15.2.6 General Errors
	15.2.7 Ingest Process Status Messages
	15.2.8 Unexpected Errors

