

TELESCOPE DATABASE INTERNALS GUIDE

VERSION 9.4.0.17

February 12, 2019

DRAFT (NOT ALL FUNCTIONS ARE

ADDED)

The information contained in this document is confidential. The reproduction or distribution of the contents of

this document, in whole or in part, to anyone other than the intended recipient without the express written

consent of North Plains Systems Corp. is strictly prohibited

Copyright 1994 -2019, North Plains Systems Corp. All Rights Reserved. North Plains, Telescope, I-Piece,

Telescope.web and all associated logos are trademarks or registered trademarks of North Plains Systems Corp.

All other trademarked names are the property of their respective companies.

 Telescope Database Internals Guide

 Page 3 of 162 2/12/19

Table of Contents

TELESCOPE DATABASE INTERNALS GUIDE ... 1

VERSION 9.4.0.17 .. 1

Overview .. 11

Triggers, Stored Procedures, and Functions .. 11

Database Tables ... 12

Metadata Tables ... 13

CASCADE_FIELDS .. 13

COLUMN_DISPLAY ... 14

EXTRA_COLUMNS .. 14

Adding External Tables.. 14

EXTRA _COLUMNS Fields ... 15

EXTRA_POPUPS (Deprecated)... 18

ICONIC_FIELDS ... 18

POPUPS .. 19

POPUPS_LANG .. 20

Asset Data Tables .. 22

ACCESS_HISTORY ... 23

CHECKOUTS ... 24

COV_FONTS.. 25

COV_GEOMETRY ... 26

COV_INFO .. 28

COV_MAJORTYPES... 29

COV_PAGES .. 29

COV_SECTIONS ... 30

COV_SECTIONTYPES ... 31

DOC_FILE_INFO .. 31

DOC_LINKAGES ... 32

DOC_RENDITIONS... 33

 Telescope Database Internals Guide

 Page 4 of 162 2/12/19

ED_VERSIONS .. 35

EDITORIAL .. 37

EDITORIAL SELECTION .. 39

EMBEDDED_METADATA ... 39

FT_CONTENTS .. 40

IANNOTATION ... 40

INOTES .. 41

THUMBNAILS ... 42

VIEWEX .. 42

VL_ANNOTATIONS ... 45

VL_ANNOTATIONSETS.. 46

VL_CLIPS .. 46

VL_INFO .. 47

VL_PLAYLISTS .. 47

VL_PROXIES ... 48

VL_TEXT .. 49

VL_THUMBNAILS .. 49

VL_TRACKS ... 50

Track ID Values .. 50

ZOOM_INFO ... 51

Functional Rules Tables .. 53

FN_MESSAGES ... 53

FN_RULES .. 53

FN_RULESETS ... 54

FN_WATERMARKS .. 55

Order Entry Tables .. 57

EXT_ADDRESSES ... 57

OE_ARCHIVE .. 58

OE_ASSETMETADATA .. 58

OE_ASSETOUTVALS ... 59

OE_ASSETS .. 60

 Telescope Database Internals Guide

 Page 5 of 162 2/12/19

OE_ASSETSTATVALS ... 60

OE_FULFILLERS ... 61

OE_METADATA ... 62

OE_ORDERS ... 62

OE_OUTVALS ... 63

OE_STATVALS ... 64

User Tables ... 65

ANNOUNCEMENT_LIST_GROUPS .. 65

ANNOUNCEMENT_LIST_MODERATORS .. 65

ANNOUNCEMENT_LISTS ... 66

ANNOUNCEMENTS ... 66

DOWNLOAD_QUEUE ... 67

EXTENDEDVIEW_FIELDS .. 69

PARAVIEW_FIELDS ... 69

QL_ASSETS ... 70

QL_RECIPIENTS... 70

QL_TICKETS ... 71

TEXTVIEW_FIELDS .. 71

TNAILVIEW_FIELDS .. 72

UPLOAD_QUEUE (Deprecated) ... 72

USERS ... 72

VIEW_ACTIONS ... 79

VIEW_CATALOGS ... 79

VIEW_CONV ... 79

VIEW_FIELDS .. 80

VIEW_FM .. 80

VIEW_FORMS .. 81

VIEW_GROUPS ... 81

VIEW_HIER ... 81

VIEW_METHODS ... 82

VIEW_REND.. 82

VIEW_RM .. 83

 Telescope Database Internals Guide

 Page 6 of 162 2/12/19

VIEW_SOURCES .. 83

VIEW_TRACKS .. 83

VIEW_VIDEOMGR ... 84

VIEW_VL_ANNOTATIONSETS .. 84

VIEW_WELCOMEPAGES ... 85

Collection Tables .. 86

M_LB_ITEMS .. 86

M_LIGHTBOXES ... 86

Welcome Pages Tables ... 88

WELCOME_ICONIC_LEVELS ... 88

WELCOME_ICONIC_SEARCHES ... 89

WELCOME_ICONS .. 90

WELCOME_PAGES .. 91

Messaging Tables .. 92

M_ACTIONS .. 92

M_ATTACHMENTS .. 93

M_MESSAGES ... 93

M_MSGACTIONS ... 94

M_MSGTEXT ... 94

M_RECIPIENTS ... 95

M_TEMPLATE ... 96

Orchestration Services Tables ... 97

WS_ARCHIVE .. 97

WS_DECISIONS .. 97

WS_J_NOTIFICATIONS .. 98

WS_J_USERS ... 98

WS_JUNCTIONS .. 99

WS_RM_NOTIFICATIONS ... 99

WS_ROUTEMAPS .. 100

WS_S_NOTIFICATIONS ... 100

WS_SERVICEASSETS .. 101

 Telescope Database Internals Guide

 Page 7 of 162 2/12/19

WS_SERVICEDECISIONS .. 101

WS_SERVICEJUNCTIONS ... 102

WS_SERVICES .. 103

WS_SERVICETRACE ... 103

WS_SJ_NOTIFICATIONS ... 104

WS_SJ_USERS ... 105

WS_ST_USERS ... 105

Search Tables .. 106

FORM_SEARCH ... 106

FORM_SEARCH_FIELDS ... 107

FORM_SEARCH_VALUES ... 108

HIER_ITEMS (Deprecated) .. 108

HIER_LEVELS (Tree Search) .. 109

HIERARCHIES.. 109

SAVED_SEARCHES .. 109

SEARCH_INDEX_ACTIONS .. 110

SEARCH_INDEX_LOG .. 112

MIMiX (Synchronization Broker) Tables .. 113

MMX_SYNC .. 113

Distribution Broker Tables .. 114

DISTB_AUDIT_TRAIL ... 114

DISTB_DATA_RECOVERY ... 115

Miscellaneous Brokers .. 117

Interoperability Broker Tables .. 117

INTEROP_EVENT_QUEUE .. 117

Rest Broker Tables (For Future Use).. 117

Queue Broker and Connection Broker Tables (For Future Use) ... 118

System Tables ... 119

AUDIT.. 119

DB_INTEGRITY (Deprecated) .. 120

DB_SETTINGS ... 120

 Telescope Database Internals Guide

 Page 8 of 162 2/12/19

Sample DB_SETTINGS Keywords ... 121

DEBUG_LOG ... 125

DL_METHODS .. 126

ERROR_LOG (Deprecated) .. 126

FM_POLICIES... 126

I_PIECES (Deprecated) .. 126

JOBS .. 127

LANGUAGE_LOCAL .. 127

NAMED_CONV ... 128

NPS_DBCHNG_LOG (Internal Use) .. 128

RENDITIONS .. 128

SEQUENCES ... 129

SES_POOLS .. 130

SHARE_MAPPINGS .. 130

SORTS (Deprecated) .. 131

TS_STATISTICS ... 131

TYPE_CODES ... 133

Telescope Query Generator .. 134

Appendix: Programmability .. 135

Functions and Stored Procedures ... 135

tsp_acquirecheckoutlock ... 135

tsp_acquirecheckoutlock_impl .. 135

tsp_add_setting ... 136

tsfn_charindexr .. 136

tsp_createMetadataField ... 137

tsp_createMetadataSmartCatalog .. 138

tsp_createNRtable ... 139

tsp_createplaylistasset ... 139

tsp_createplaylistfromclip .. 140

tsp_createpreviewonlyasset ... 140

tsp_createTableExtendEditorial (Internal Use) ... 141

 Telescope Database Internals Guide

 Page 9 of 162 2/12/19

tsp_createvideoasset ... 141

tsp_delete_record .. 142

tsp_deleteMetadataSmartCatalog .. 142

tsp_delete_version .. 142

tsp_FindAllChildren ... 143

tsp_FindAllParents ... 143

tsp_FindChildAsset .. 144

tsfn_getcontainers ... 144

tsp_getfieldvalue .. 145

tsp_getfiletypes ... 145

tsfn_getfiletypes ... 146

tsp_getMimix ... 146

getnegativeExtraColumnsID (Internal Use) .. 146

tsp_getnextid_impl ... 147

tsfn_getpopups .. 147

tsp_getpopups .. 148

tsp_getplaylistassetname ... 148

tsp_getsetting ... 149

tsp_getvideoassetdescriptor .. 149

tsp_ins_debug_log .. 150

tsp_ins_error_log (Deprecated) .. 150

tsp_ipflip_getimportqueue ... 151

tsfn_jsonencode (Internal Use) ... 151

tsfn_MsecToSmpte .. 151

tsp_newdocument.. 152

tsp_parse_str .. 152

tsp_popularFeed, tsfn_popularFeed ... 153

tsp_recentFeed, tsfn_recentFeed ... 153

tsp_setupLanguages .. 154

tsfn_SmpteToMsec .. 154

tsfn_toUnixTimestamp.. 155

tsp_update_md5 ... 155

 Telescope Database Internals Guide

 Page 10 of 162 2/12/19

tsp_vm3_repairinfo ... 156

Functional Rules .. 156

tsfr_ApplyOfficeMetadata (Deprecated) .. 156

tsfr_ApplyXMPMetadata ... 156

tsfr_ApplyPlayListMetadata ... 157

tsfr_GetIndesignConnectInfo ... 158

Triggers ... 158

trig_editorial_approval_update .. 158

tstrg_access_history_ins .. 158

tstrg_cov_info_ins ... 158

tstrg_embedded_metadata_del ... 158

tstrg_embedded_metadata_ins ... 159

tstrg_extra_columns_ins .. 159

tstrg_vl_info_insupd .. 159

tstrg_vl_playlist_url_ai ... 159

TSTRG_USER_NAME_HISTORY .. 159

Audit Table Triggers ... 159

Views ... 162

tsvw_doc_renditions .. 162

tsvw_embedded_metadata ... 162

 Telescope Database Internals Guide

 Page 11 of 162 2/12/19

Overview

The core of the Telescope application is its database, which stores the majority of the application data, including

asset information or metadata. Telescope supports prominent database vendors, operating systems, and

hardware. Databases such as Oracle, and Microsoft SQL Server, and systems such as Sun Solaris, HP, Windows

(Intel), and Linux (Intel) are commonly used with Telescope implementations. Consequently, the Telescope

application and database have a “vanilla” design, with few vendor-specific features that could impair cross-

platform or cross-database compatibility. As a result, you must make minor adjustments to the Telescope

database to meet your unique performance and functional requirements. To meet this need, the product is built

to be extremely flexible and powerful in the hands of a knowledgeable administrator.

The purpose of this guide is to help Telescope administrators:

 Understand the data structure of the Telescope database

 Achieve a working knowledge of the relationship between the database tables

 Customize the Telescope environment using stored database code (triggers, procedures, and functions)

 Tune the database to maximize Telescope performance in their environments

This guide lists the tables and their columns, explains their uses, and provides tips for using them. It also

includes information about using triggers, procedures, and functions, and making the best use of the Telescope

query generator. Finally, exercises (and their possible solutions) help you apply the information to real world

scenarios.

Triggers, Stored Procedures, and Functions

The Telescope database uses triggers, stored procedures, and functions to enhance its functionality. You can use

these procedures and functions to develop custom functionality, but since Telescope depends on them, you

must not alter them in any way.

WARNING: Do not delete, disable, or modify any Telescope trigger, procedure, or function.

Telescope triggers are described in the table description where they are used. Telescope procedures and

functions are described in Appendix B.

 Telescope Database Internals Guide

 Page 12 of 162 2/12/19

Database Tables

The Telescope application uses tables that can be categorized according to nine functions:

Metadata tables store information about the Telescope metadata schema, and assist with data entry. These

tables provide data validation, popup menus, and cascading fields.

Asset Data tables contain all the information about assets. The information in these tables ranges from

customized fields and keywords to file size and modification dates of individual assets.

Functional Rule tables store information about the Telescope functional rule scripting capabilities.

Order Entry tables manage and store data about the structure of the order entry system, and the orders placed

by users.

User tables contain information about Telescope users. Personal settings in the Telescope application are stored

in these tables, along with the Telescope user permission model.

Catalog tables store information about Telescope collections (catalogs).

Messaging tables store Telescope messages between users, including attachment of assets.

Search tables store information about various different kinds of Telescope searches that are available to users to

easily locate asset records in the database.

System tables store application-wide information. Data such as application settings, user statistics information,

and even installed customizations are stored in these tables.

Feature-specific tables store information required by certain Telescope features, such as Order Processing and

Orchestration.

Note: In the descriptions of data types for these tables, the nvarchar(max) type is the MS SQL data type;

Oracle equivalents may be either CLOB or NCLOB.

 Telescope Database Internals Guide

 Page 13 of 162 2/12/19

Metadata Tables

The following tables handle the structure of Telescope metadata and its validation:

 CASCADE_FIELDS

 EXTRA_COLUMNS

 ICONIC_FIELDS

 POPUPS

These tables are described in detail in the sections that follow.

CASCADE_FIELDS

Cascading fields are metadata fields that are visible or hidden in Telescope clients depending on values of

another “parent” field. For example, imagine an environment with the following metadata fields:

Asset Type: a popup menu with a choice of “Project” or “Document”

Project Name: a free form field for the name of the project

Document Description: a free form field for the description of the document

If the user picks an Asset Type of “Project,” the field “Project Name” should become visible and “Document

Description” should be hidden. If the user picks an asset type of “Document,” the field “Document Description”

should become visible and “Project Name” should be hidden.

The following chart describes the columns in the CASCADE_FIELDS table.

Field Data Type Description

column_idx short integer ID of the field whose cascade properties are being described.
It is a reference to the ID column in the EXTRA_COLUMNS
table. In other words, this is the “child” ID.

cascade_column short integer ID of the field that controls the visibility of the field being

described. It is also a reference to the ID column in the
EXTRA_COLUMNS table. In other words, this is the “parent”
field ID.

cascade_value short integer This is the value of cascade_column for which the field being
described should be visible. It is an index into the popup
menu for the parent field and thus a reference to the

popup_idx column in the POPUPS table.

 Telescope Database Internals Guide

 Page 14 of 162 2/12/19

COLUMN_DISPLAY

The following chart describes the columns in the COLUMN_DISPLAY table, which is an additional lookup table for

non-translatable fields to have localized labels (display names).

Field Data Type Description

column_id short integer Cross-reference to the column ID in the EXTRA_COLUMNS
table.

display_name nchar(100) The localized name displayed for the column corresponding to

the lang_id language. For example, en_US.

lang_id nchar(10) The language of the display name. Display names will be
displayed if this setting matches the user local setting.

EXTRA_COLUMNS

The EXTRA_COLUMNS table is the “data dictionary” that Telescope uses to define every metadata column used

in the Telescope environment. It is populated when administrators add metadata fields through the TSAdmin

interface. (Manual database updates are not recommended.) Columns that are not listed in the EXTRA_COLUMNS

table will not appear as metadata fields in the Telescope environment.

Columns containing metadata information are added to the EDITORIAL table by default, but some customer

environments may need to split the data across several tables, for example if there is too much data to be

contained in the one EDITORIAL table, or if there are external tables that need to be kept separate. Normalized

repeating fields also require separate tables to contain their data. If you need to add these external tables, follow

the instructions below.

Adding External Tables

If you need to use tables outside of the EDITORIAL table, follow these instructions:

1. Use the tsp_createTableExtendEditorial procedure to manually create the external tables. We strongly

recommend using this procedure to ensure all verifications are performed and the mandatory record_id

field and all keys and constaints are included. This procedure will also set up a foreign key relationship

to the editorial table so that the new table is visible in TSAdmin.

2. Manually add all required columns to this new table. Use names that will identify the metadata fields

you will be creating. Note that only one additional column is required if you are creating a table for

Normalized Repeating fields.

 Telescope Database Internals Guide

 Page 15 of 162 2/12/19

3. Use TSAdmin (Fields tab) to add each of the new fields. Select the new table from the Table Name

pulldown (it will be available there if you used the above procedure) and then select the appropriate

column from the Field Name pull-down. (For normalized repeating fields, only one field is available.)

4. Specify the rest of the information as required. The information you complete in this Metadata field

section is the data stored in the EXTRA_COLUMNS table.

Note: There are a few minor limitations on metadata that is stored externally (outside of the EDITORIAL

table). These limitations include the inability to perform hierarchical searches on these columns and the

ability to have these columns appear in the thumbnail view of the application. Future releases of Telescope will

not have these limitations.

EXTRA _COLUMNS Fields

The following chart describes the columns in the EXTRA_COLUMNS table.

Field Data Type Description

id short integer Unique ID representing the column; referenced by other
tables in the Telescope schema to uniquely link data back to

a column.

column_name nchar(32) Name of the column as it appears in the database table.

viewer_name nchar(32) Default name of the column, as users will see it in the
Telescope application.

table_name nchar(32) Name of the table where the column resides. In most cases,
this field will contain “editorial,” because the majority of
columns defined in Telescope reside in this table. However,
Telescope supports fields in extra_columns that do not exist
in the EDITORIAL table, both for display and editing
purposes.

Note:, Normalized Repeating fields also use external tables. .

data_type integer A number that specifies the type of data contained in the
metadata field’s column created in the EDITORIAL table.

1 Char (up to 255 characters)

2 Longchar (over 255 characters). Some DBMSs (like
Oracle) define a maximum length on this type of field and
others do not. The max_len field can be used to limit the
number of characters allowed in this type of field for a
particular DBMS.

3 Integer (4-byte integer)

4 Short Integer (2-byte integer)

5 TimeStamp could contain the date, time, or both

6 Boolean. This is not a Boolean field, but actually a one-
character field with the value “Y” indicating true. any other

 Telescope Database Internals Guide

 Page 16 of 162 2/12/19

Field Data Type Description

value (except NULL) indicating false, and NULL indicating not
specified. The NULL value is only allowed if the field is not
required (required_yn below cannot be “Y”).

7 Repeating fields are a delimited list of text stored as a
longchar field. Telescope displays the values as a list, parsing

out the delimiter, which is a vertical pipe character (“|”). The
maximum number of entries in this list is limited by the
length of the field (max of 2000 characters). An example of a
list would be: “|this|is|an|example|.”

8 Normalized Repeating fields are a list of values stored
in a separate, normalized table. It is treated, for display
purposes in Telescope as a standard repeating field. The

individual values are retrieved from separate records in an
external normalized table (which needs to be created
externally). These fields are recommended over Repeating
fields.

9 Real. This is represented in the database as a floating-
point number in the database’s internal format.

12 Container Field – number. This field is a counter that

indicates the number of child assets in the container field. A
parent asset is linked to a child asset by entries in the
DOC_LINKAGES table. (For details, see the explanation for
that table.).

14 Iconic Field.

15 Separator.

99 I-Piece defined. This is actually a Longchar field that is
handed by an I-Piece in the Telescope structure. The
contents of this field are known only by the I-Piece that
controls the field, and Telescope treats the field as an opaque
structure. (This field is relevant to Version 8.5, not to 9.x.)

max_len integer Maximum number of characters that can be put into the field.
This is only used for Char, Longchar, timestamp, and
Repeating fields (i.e., fields whose data_type value is 1, 2, 5
or 7).

For timestamp fields, the value of this field determines how

the information is displayed. A value of 1 indicates Date, 2
indicates Time, and 3 indicates Both.

For Real fields (i.e., data_type 9), this field gives the number
of decimal places that should be displayed. For other data
types, this field is ignored.

validate_yn nchar(1) “Y” in this field indicates that the field is validated against its
popup menu before the user is allowed to continue. Any
other value (including NULL) in this field indicates that the
field can contain any value, and the popup menu for the field
(if there is one) is used as a data-entry tool only.

TsWeb highlights required fields with an asterisk and/or
different color.

 Telescope Database Internals Guide

 Page 17 of 162 2/12/19

Field Data Type Description

required_yn nchar(1) “Y” in this field indicates that the field must contain a value
before the user is allowed to continue. Any other value
(including NULL) in this field indicates that the field may be
left blank.

custom_yn nchar(1) “Y” in this field indicates that the user can add values to the
popup menu. These values are visible only to the user who
added them.

This field is not recommended for controlled vocabulary
because only the defining user can see it. Use instead the

POPUPS table.

priv_lvl integer DEPRECATED.

colcascade_yn nchar(1) “Y” in this field indicates that the field’s visibility depends on
the value of another field.

lookup_yn nchar(1) “Y” in this field indicates that this field is a lookup-enabled
field facilitated by the Lookup Broker. This field and the
lookup.xml file must match. For example, for ISBNs; all
occurrences must be synched across your environment.

col_properties nvarchar(4000) The properties values for the Telescope field. This text field
contains a set of property values in standard Windows ‘.ini’
attribute format (i.e. name = value), with each
attribute/value pair separated by a newline (ASCII 10 or

ASCII 13 or both).

distribute_yn nchar(1) “Y” in this field will mark the field to be distributed by the
Distribution Broker. When set to “N”, the field is ignored by
the Distribution Broker.

searchon_yn nchar(1) “Y” in this field will mark the field to be included in searches.
When set to “N”, the field will be not indexed by the Indexing
Broker, and will not be accessible to TSWeb users when they
are searching.)

faceton_yn nchar(1) “Y” in this field will mark the field to be facetable in Solr
searches. TSWeb users will be able to refine their search
results by selecting values from the metadata field. When set

to “N”, faceting will not be available for the field. Max_length
of these fields should be less than 250 characters, and

preferably controlled vocabulary fields (through the POPUPs
table) to limit the number of facet entries.

prompt_yn nchar(1) This field is intended for future use.

lang_id nchar(10) Identifies the language (from the language_local table,
lang_id column). For example, en_US.

parent_id smallint This field is intended for future use.

 Telescope Database Internals Guide

 Page 18 of 162 2/12/19

Field Data Type Description

bucket_type nvarchar(30) For Refine Search (faceting), defines the type of bucketing,
defined by the data type (timestamp, integer).

bucket_size real number For Refine Search bucketing, defines the size of each
facet/range.

min_start datetime For Refine Search bucketing involving timestamps, shows the

start value shown to users.

max_end datetime For Refine Search bucketing involving timestamps, shows the

end value shown to users.

min_start_int real number For Refine Search bucketing involving integers, shows the
minimum value shown to users.

max_end_int real number For Refine Search bucketing involving integers, shows the
maximum value shown to users.

time_range nvarchar(32) This field is intended for future use.

translatable_yn char(1) “Y” in this field will mark the field as translatable, for multi-
language implementation. When set to “Y”, Telescope will

look for translated values in the COLUMN_DISPLAY table.

EXTRA_POPUPS (Deprecated)

DEPRECATED.

ICONIC_FIELDS

The ICONIC_FIELDS table contains information about the iconic field data (metadata fields) in the Telescope

database. The following chart describes the columns in the ICONIC_FIELDS table.

Field Data Type Description

id integer

(identity)

Unique ID generated automatically on insert into the table. In

Oracle, this is a plain integer column with an insert trigger to
populate it from an Oracle sequence.

column_idx integer Cross-reference to theID field in the EXTRA_COLUMNS table
for the column the popup menu is associated with.

position integer The position in the sequence (1, 2, 3 and so on)

value Integer The value shown to the user.

 Telescope Database Internals Guide

 Page 19 of 162 2/12/19

icon binary The icon image. This is stored in PNG format (to allow for
transparency), of any size.

POPUPS

In the Telescope environment, you can configure a metadata field to use an assigned popup menu of values (or

list of values) to enforce a controlled vocabulary during data entry. Use a popup menu to restrict the values a

user can enter in the field or simply to assist them in entering data. This activity can be done using the TSAdmin

interface (refer to the section on popup menus in the Administrator’s Reference Manual).

A limited amount of formatting data can be embedded in the values for display purposes within the clients, as

follows:

Separators: If the first character of the text is a ‘-’, then the rest of the text in the item will be ignored, and the

item treated as an un-selectable separator item in the popup menu (usually represented as a grey horizontal line

or dotted line).

Text Style: The character ‘<’, if it appears in the text, will be followed by one of the following: ‘B’, ‘I’, or ‘U’,

representing bold, italic, or underline, respectively. If the ‘<’ is followed by any other character, it will be removed

from the text before insertion into the popup menu (this effectively precludes the use of the ‘<‘ character in the

text).

The following chart describes the columns in the POPUPS table.

Field Data Type Description

column_idx short integer Cross-reference to the ID field in the EXTRA_COLUMNS table
for the column the popup menu is associated with.

popup_idx short integer Index representing the text’s position in the popup menu.

Popup indices are numbered from 1 and are contiguous
through to the maximum number of items on the menu.

cascade_column short integer If not zero, this value is a cross-reference to the ID field in the
EXTRA_COLUMNS table for the column this popup cascades

from.

cascade_value short integer If not zero, the value of popup_idx for the column defined by
cascade_column that must be selected in order for this item to

be active.

popup_text nvarchar (255) Value to be used in the popup list. See above for information
on embedding style or separator meta-tags in this text.

 Telescope Database Internals Guide

 Page 20 of 162 2/12/19

Popup menu values can ‘cascade’ off popup menu items in other fields. For example, assume a metadata model

with ‘Country’ (id=1 in extra_columns) and ‘State’ (id=2 in extra_columns) fields. Country has a popup menu that

contains the values ‘USA’ and ‘Canada’. This would be represented in the popups table as:

column_idx popup_idx cascade_column cascade_value popup_text

1 1 0 0 USA

1 2 0 0 Canada

The metadata model requires that the popup of the State field be set up such that, if ‘USA’ is selected for

Country, the State field’s popup menu should have the values ‘New York’ and ‘California’ in it; and if ‘Canada’ is

selected for Country, the State field’s popup menu should have the values ‘Ontario’ and ‘British Columbia’ in it.

To achieve this, cascading popup menu values are defined as follows:

column_idx popup_idx cascade_column cascade_value popup_text

2 1 1 1 New York

2 2 1 1 California

2 3 1 2 Ontario

2 4 1 2 British Columbia

POPUPS_LANG

Default language pop-up menu values are stored in the POPUP table of the Telescope database. When users are

viewing the interface in another language, popup menu choices in the user’s selected language are retrieved at

run time from the POPUPS_LANG table and displayed in the TSWeb interface. Popup menu values remain in the

same order, regardless of which language they are being viewed in.

Note: A SOAP API call is required to populate this table. See the Administrator’s Guide.

The following chart describes the columns in the POPUPS_LANG table.

Field Data Type Description

column_idx small integer The ID value of the popup menu being defined, as
identified by the column_idx column of the POPUPS table.

popup_idx small integer Index representing the text’s position in the popup menu.
Popup indices are numbered from 1 and are contiguous
through to the maximum number of items on the menu.

 Telescope Database Internals Guide

 Page 21 of 162 2/12/19

Field Data Type Description

lang_id nvarchar(10) The language ID of the values in the popup_text array.
(For example, “fr_CA”.) This value must exist in the
lang_id column of the language_local table.

popup_text nvarchar(256) Contains a comma-separated sequence of strings that are

the translations of strings defined in the popup_text
column of the POPUPS table. All strings must be included
that have the same ID value in the POPUPS table (as
identified by the column_idx of the POPUPS_LANG table),
and must be ordered to match the popup_idx values in the

POPUPS table.

 Telescope Database Internals Guide

 Page 22 of 162 2/12/19

Asset Data Tables

All of the tables listed below are described in detail in the sections that follow.

The following tables manage Telescope asset information:

 ACCESS_HISTORY (tracks user actions)

 CHECKOUTS (contains information about assets checked out of the database)

 DOC_LINKAGES (stores the contents of container fields)

 DOC_RENDITIONS (stores file attribute information about assets)

 EDITORIAL (contains metadata assets)

 ED_VERSIONS (stores non-primary versions of an asset)

 FT_CONTENTS (stores full-text data for assets used for full-text search and retrieval functions)

 INOTES (stores notes users add to assets) manages the Telescope asset version control system).

 THUMBNAILS (contains binary encrypted data that portrays the thumbnail version of each asset)

 VIEWEX (contains binary dataraster graphics imagesused to display the extended view of an asset)

The following tables deal with COV extended views:

 COV_FONTS

 COV_GEOMETRY

 COV_INFO

 COV_MAJORTYPES

 COV_PAGES

 COV_SECTIONS

 COV_SECTIONTYPES

The following tables handle Video Manager views:

 VL_ANNOTATIONS

 VL_ANNOTATIONSETS

 VL_CLIPS

 VL_INFO

 Telescope Database Internals Guide

 Page 23 of 162 2/12/19

 VL_PLAYLISTS

 VL_PROXIES

 VL_TEXT

 VL_THUMBNAILS

 VL_TRACKS

The following tables contain metadata that handles extended views:

 EMBEDDED_METADATA

 IANNOTATION

 ZOOM_INFO

ACCESS_HISTORY

The ACCESS_HISTORY table tracks user actions in the Telescope environment. It records every action by

individual users against each asset.

This table is one of the most useful Telescope tables when creating application customizations. Database triggers

can be created on this table to perform database tasks based on the action a user performed. For example, a

trigger could be created to send an email to the Telescope administrator every time a user deletes an asset from

the system.

In very active Telescope environments, the ACCESS_HISTORY table can grow very quickly. To prevent database

fragmentation and to distribute I/O, consider physically storing the ACCESS_HISTORY table separately. (In an

Oracle environment, use a separate tablespace. You may want to consider placing the ACCESS_HISTORY and

TS_STATISTICS tables together in one tablespace.)

The following chart describes the columns in the ACCESS_HISTORY table.

Field Data Type Description

id identity Unique ID generated automatically on insert into the table. In

Oracle, this is a plain integer column with an insert trigger to
populate it from an Oracle sequence.

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

access_time datetime
(timestamp)

Date and time the access was performed. A NULL in this field
indicates that the action is an approval, which has not
happened yet.

 Telescope Database Internals Guide

 Page 24 of 162 2/12/19

Field Data Type Description

access_user nvarchar(32) User name of the user who made the access. A NULL in this
field indicates that the action is an approval any user can take
advantage of, which has not happened yet.

access_approval nvarchar(255) Name of the user who approved the access. If the
access_type entry is 99, this field contains a text description
of the access type being defined.

access_type small integer A number representing the type of access performed by a
user or process when manipulating an asset record or

associated files. Possible values include:

1 Download

2 Editorial Modification

3 Delete

4 Insert (Archive)

5 Synchronize

6 Move File(s)

7 Open in Application (Not used in Version 9.2 or later)

8 Check Out

9 Check In

10 Attach Rendition

11 Order Asset

12 Extended View

13 Native Plugin

14 Seen in Hot Folder

16 Entered Hot Folder Queue

17 Menu

21 Job ingested successfully by Telescope Uploader

22 Job ingested with warning (incomplete) by Telescope
Uploader

99 Custom

access_description nvarchar(255) Free-text descriptive field.

rendition integer Rendition ID of the document’s file that was affected by this
activity, if applicable. Zero or NULL otherwise.

CHECKOUTS

The CHECKOUTS table contains information about documents (assets) that are checked out of the database.

Records are added to this table when a user checks out a file and removed from the table when the file is

 Telescope Database Internals Guide

 Page 25 of 162 2/12/19

checked back in. While an asset is checked out, the physical file cannot be checked out by any other Telescope

user. This is how version control and workflow are enforced through the Telescope application.

You can create customizations to automate workflow and the checkout processes. For example, imagine an

environment where the metadata of an asset changes as it progresses through its lifecycle. User A is the current

owner of the asset and changes the “status” field of the asset from “in-progress” to “review” and he changes the

“owner” to user “B”. A trigger may fire that automatically checks the asset out on behalf of user B to lock the

asset, preventing any further changes by other users. When user B is finished, she checks the asset back in and

changes the “status” and “owner” fields accordingly.

The following chart describes the columns in the CHECKOUTS table.

Field Data Type Description

record_id integer Cross-reference to the record_id in the EDITORIAL table of
the asset that is checked out.

user_name nvarchar(32) Name of the user (taken from the USERS table) who
performed the checkout.

file_name nchar(255) Name of the file that has been checked out, taken from the
local copy of the file being worked on.

chkoutdate datetime
(timestamp)

Date and time when the checkout was performed (this will
come from the {fn NOW()} scalar function on the database,

so that it will be a server-based time).

chkoutfile nvarchar(2000) file_location for the checked-out file on the user’s machine.
The format of this field is identical to the file_location field in
the EDITORIAL table. This field refers to the local copy of the
file that is being worked on, not the original, which is referred
to by file_location in the EDITORIAL table.

filemoddate datetime
(timestamp)

Modification date and time of the file. It is extracted from the
local copy of the file after it is downloaded to the user’s
machine. This date and time are compared to the file’s

modification date and time when the file is checked back in to
the database.

rendition integer Rendition ID of the document’s file that was checked out. This

will be used during check-in to ensure that the proper

rendition is versioned.

COV_FONTS

The COV_FONTS table stores information about the fonts used in a COV document. The following chart

describes the columns in the COV_FONTS table.

 Telescope Database Internals Guide

 Page 26 of 162 2/12/19

Field Data Type Description

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

font_index integer Place of the font in the list for the COV. This value ranges
from 1 to n, where n is the number of fonts recorded for a
COV.

font_name nvarchar(255) Human-readable name of the font.

font_code nvarchar(255) Machine name of the font, if applicable. Some fonts have a

display name and a name by which the font is recognized by
the OS. For example, “Helvetica” is often called “HELVE” in
the operating system.

COV_GEOMETRY

The COV_GEOMETRY table represents items of interest on a given page of a COV. In the COV structure, a COV

display is divided up into pages, with each page having a preview and some number of “Geometry” items on the

page. Each geometry is either a “document” geometry that refers to a sub-document in the COV (and therefore

has another asset record for it in the database), or a “text” geometry that refers to a text area on the page (and

therefore has an FT_CONTENTS record for it in the database). The following chart describes the columns in the

COV_GEOMETRY table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

page_num integer The number of the page within the component object. These
pages are numbered sequentially from 1 to n, where n is the

number of pages contained in the num_pages field in the
cov_info table for this COV.

geometry_order integer Order of the geometry on the page. Geometry items are

ordered from 1 to n, where n is the number of geometry
items on the page. This ordering becomes especially

important when there are overlapping geometry items on a
page, in which case the ordering is used to provide “front-to-
back” layering of the geometry items.

 Telescope Database Internals Guide

 Page 27 of 162 2/12/19

Field Data Type Description

geometry_type nchar(10) Text value that indicates the type of the geometry entry.
There are two valid geometry types:

document - refers to a sub-document in the COV (for
example, a placed art file in a Quark document). There will be
another DOC_RENDITIONS entry in the database for this

placed file.

text - describes an area of text on the page. The contents of
the text area will be described in the FT_CONTENTS record
that is associated with this geometry.

enclosing_left integer Left side of the rectangle that encloses this geometry on the
page.

Note: The enclosing rectangle for a geometry assumes a
normalized page dimension of (0, 0, 1000, 1000), regardless
of the physical size of the page. This means that all of the
enclosing rectangle columns will contain values in the range

of 0 to 1000.

enclosing_top integer Top side of the rectangle that encloses this geometry on the
page. See note above.

enclosing_right integer Right side of the rectangle that encloses this geometry on the
page. See note above.

enclosing_bottom integer Bottom side of the rectangle that encloses this geometry on

the page. See note above.

file_path nvarchar(max) Full file path of the sub-document’s file. This can be in any
representation and is usually represented in the format native
to the OS on which the parent document was created.

create_date datetime
(timestamp)

Date the sub-document’s file was created.

Note: The original system create and modify dates may not
always be preserved when a file is imported, because of
differences in data handling between different operating
systems.

mod_date datetime
(timestamp)

Date the sub-document’s file was last modified.

Note: The original system create and modify dates may not
always be preserved when a file is imported, because of

differences in data handling between different operating
systems.

file_size big integer Size (in bytes) of the sub-document’s file.

fulltext_id integer Cross-reference to the ft_id column in the FT_CONTENTS
table for a ‘text’ geometry. The text of the geometry item will
be in the FT_CONTENTS table with the given ID.

 Telescope Database Internals Guide

 Page 28 of 162 2/12/19

Field Data Type Description

file_checksum nchar(32) A hexadecimal representation ("hash") of the file. This
"unique" hash is created from the first 2 MB and last 2 MB of
the file, a variation of the MD5 function. This representation is
sometimes referred to as an "MD5" in Telescope functions,
database model names, and so on but is called “checksum” in

this document. This information is used to link placed art back
to the parent document.

If the file cannot be found, this entry will be NULL.

xmp_docid nvarchar(36) If Adobe InDesign files are imported using an older version of
the Xinet plugin, the checksum information may not be
populated into the file_checksum field. Instead, similar
document identification information is stored in this
xmp_docid field.

COV_INFO

The COV_INFO table contains information about the component object view (COV) displays. If a document in the

Telescope database has a COV display for its extended view, that document’s entry in the VIEWEX table will

contain NULL for the viewex field, and the text “COVv” in the data_type field. For such a document, there will be

a single COV_INFO entry, which contains general information about the COV display and acts as the “root” of the

tree of entries in the COV that describe the pages, text, geometry items, etc. that make up the COV display. The

following chart describes the columns in the COV_INFO table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

 Telescope Database Internals Guide

 Page 29 of 162 2/12/19

Field Data Type Description

dflt_display nchar(10) Default display layout for this COV. If this field has a value, it
overrides the user’s preference for display type for this
particular COV. The possible values for this field are:

<empty> - the user’s display preference should be used to
view the COV

1UP – the COV is displayed 1-up by default.

2UP_ODD – the COV is displayed by default as 2-up, with
odd pages on the right.

2UP_EVEN – the COV is displayed by default as 2-up, with

even pages on the right.

THUMBS –used for PPT/PPTX COV previews. If the
DATA_TYPE is COVv and this field is THUMBS, it indicates

there is a Powerpoint (PPT or PPTX) to preview. The pages
stored in COV_PAGES then have a slightly different format in
the database: odd pages are created for the thumbnails, and
even pages for the preview slides. (If the DATA_TYPE is COVv
and this field is not THUMBS, the preview is simply displayed
as pages of a document.)

cov_description nvarchar(255) Optional description of the COV, which is shown in the COV
display in Telescope. This description could be used, for
example, to show the name and version of the application
that created the document the COV belongs to.

COV_MAJORTYPES

The COV_MAJORTYPES table stores the common types of top-level sections in a print publication. These sections

are used to create table of contents (TOC) entries for COV documents. The following chart describes the columns

in the COV_MAJORTYPES table.

Field Data Type Description

type_id integer A number representing the type of section the TOC entry
represents.

type_name nvarchar(256) A description of the type of section the TOC entry represents.

COV_PAGES

The COV_PAGES table contains the graphical representations of each page in the component object view (COV).

The following chart describes the columns in the COV_PAGES table.

 Telescope Database Internals Guide

 Page 30 of 162 2/12/19

Field Data Type Description

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

page_num integer Number of the page in the component object. These pages
are numbered sequentially from 1 to n, where n is the
number of pages contained in the COV.

page_height integer Height of the physical page in the file represented by the
COV. This is an integer representing the dimension in points
(1 inch = 72 points).

page_width integer Width of the physical page in the file represented by the COV.
This is an integer representing the dimension in points (1 inch
= 72 points).

pvw_pix_height integer Height of the page preview, in pixels, for this page of the
COV. In other words, when decompressed, the graphic data in
the PREVIEW field will be this many pixels high.

pvw_pix_width integer Width of the page preview, in pixels, for this page of the COV.
In other words, when decompressed, the graphic data in the
PREVIEW field will be this many pixels wide.

preview_type nchar(4) Four-character type indicating the format of the page
preview. At present, it will contain “JPEG”.

preview binary Preview of the page. This field is a “blob” field whose data is

interpreted by the value in the preview_type field.

COV_SECTIONS

The COV_SECTIONS table represents the table of contents entries in COV documents. The following chart

describes the columns in the COV_SECTIONS table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

page_num integer The sequential number of the page in the COV document.
These pages are numbered sequentially from 1 to n, where n
is the number of pages contained in the num_pages field in

the cov_info table for this COV. In BISG terms the sequence
page number would correspond to an Absolute-PageNumber.

section_index integer A number from 1 to n where n is the number of section items

on the page. This number indicates the order of section items
on the page in case there is more than one section defined
per page.

 Telescope Database Internals Guide

 Page 31 of 162 2/12/19

Field Data Type Description

section_pos integer The coordinate relative to the top margin of the page on the Y
axis in points.

section nvarchar(256) The section text.

section_type integer The type_id from the COV_SECTIONTYPES table
corresponding to the type of section the TOC entry points to.

indent_level integer The heading level of the TOC entry in the table of contents.

page_numreal nvarchar(256) The page number as it appears on the page in the COV

document. This may be different from the page_num value if
front matter pages are un-numbered or use roman numerals.

major_type integer The type_id from the COV_MAJORTYPES table corresponding
to the type of major section this TOC entry points to.

COV_SECTIONTYPES

The COV_SECTIONTYPES table stores the common types of sections in a print publication. These sections are

used to create table of contents (TOC) entries for COV documents. The following chart describes the columns in

the COV_SECTIONTYPES table.

Field Data Type Description

type_id integer A number representing the type of section the TOC entry
represents.

type_name nvarchar(256) A description of the type of section the TOC entry represents.

DOC_FILE_INFO

This internal table stores metadata extracted from files by the File Info I-Piece. This metadata is configurable, but

will vary by the type of file that was imported (for example, metadata from a video file will be different from that

from an audio stream or audio file, and from that for an image file).

The following chart describes the columns in the DOC_FILE_INFO table.

Field Data Type Description

id integer Unique ID generated automatically on insert into the table.
On Oracle, this is a plain integer column with an insert trigger
to populate it from an Oracle sequence.

 Telescope Database Internals Guide

 Page 32 of 162 2/12/19

Field Data Type Description

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

rend_id integer Cross-reference to the RENDITIONS table, which indicates
which rendition this record applies to.

keystr nvarchar(64) Usage varies by file type.

For image files: width. For video files: codec.

valuestr nvarchar(255) Usage varies by file type.

For image files: 640. For video files: avc.

units nvarchar(24) Usage varies by file type.

For image files: pixels. For video files: NULL.

DOC_LINKAGES

The DOC_LINKAGES table supports the Telescope container data type field, which is a type of field that contains

other assets that may be linked to the selected (or containing) asset.

 A container field is indicated in Telescope in the EXTRA_COLUMNS table when data_type = 12.

 When a container field is created, its column in the EDITORIAL table is created as an integer field.

Rather than holding the actual contents of the field, as with other data types, this column holds a

counter for the number of assets linked in the container. This counter changes to reflect the accurate

count of contained assets as they are added or removed from the container field.

 The DOC_LINKAGES table contains one row for each asset in the container field.

Container fields can be created for users to populate freeform by drag and drop, or they can be created to be

populated automatically with linked art when multi-page (Component Object View, or COV) documents are

imported (for example, by the InDesign I-Piece). COV links are maintained if the Maintain COV Links setting is

checked in TSAdmin; for details, see the Telescope Administrator’s Reference Manual.

Example:

If there are 32 assets in a container field called “placed_art”:

 The “placed_art” row in EXTRA_COLUMNS data_type = 12.

 The “placed_art” column in EDITORIAL is “32”

 There are 32 rows in the DOC_LINKAGES table, each specifying the record_id for each of the placed_art

parent (containing) asset, its ID value in the EXTRA_COLUMNS table, and the record_id for one of its

 Telescope Database Internals Guide

 Page 33 of 162 2/12/19

child (contained) assets. (The table also a column to specify the order the child asset will appear in the

list.)

Notes:

 When creating customizations that deal with container fields, be careful to increment and decrement the

container count correctly in the EDITORIAL table. Consider placing an on-insert and delete trigger in the

DOC_LINKAGES table to increment the container count in the EDITORIAL table automatically.

 The DOC_LINKAGES table can become quite large (millions of entries) very quickly, so performing a

select count or a max function against the table to adjust the container count is not advised.

The following chart describes the columns in the DOC_LINKAGES table.

Field Data Type Description

parent_id integer RECORD_ID of the containing or parent record (asset) in the
EDITORIAL table.

column_id integer ID value of the container field as listed in the
EXTRA_COLUMNS table. This value indicates the container

field this entry (parent or child relationship) applies to.

link_order integer Order of the thumbnail representations of each asset in the
container field when displayed in the Document Info view.

child_id integer RECORD_ID of the contained or child record (asset) in the
editorial table. A thumbnail representation of this asset
appears in the container field of the parent asset when viewed

from the Document Info view.

Note that the child_id column may contain multiple references
to the same asset, since multiple container fields can each
contain the same child assets.

DOC_RENDITIONS

The DOC_RENDITIONS table stores file attribute information about a particular asset. This information is

populated by Telescope automatically during ingestion. The record_id field ties the entries in this table back to

those in the EDITORIAL table. The relationship between EDITORIAL and DOC_RENDITIONS is one to many (or

one to none). If the entry in EDITORIAL represents a metadata placeholder (“New Document” for example)

without any physical files, there will not be an entry in DOC_RENDITIONS. For example, there may be a

Telescope asset of type “PROJECT” that contains metadata information about a particular project but does not

link directly to a physical file. Conversely, there may be a Telescope asset that is from a photo shoot. The

EDITORIAL record could contain the metadata information about the shoot, the photographer, and a description

 Telescope Database Internals Guide

 Page 34 of 162 2/12/19

of the picture. The DOC_RENDITIONS table could have three entries: one for the low-resolution rendition of the

picture, one for the medium resolution rendition, and one for the high-resolution rendition of the picture.

The following chart describes the columns in the DOC_RENDITIONS table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

rend_id integer Cross-reference to the RENDITIONS table, which indicates
which rendition this record applies to.

file_location nvarchar(2000) (Legacy field) Physical file location for the rendition.

Note: It is still possible store the physical location of the file
outside the Telescope installation, but this legacy feature is
discouraged. We encourage Telescope installations to import
data through the Telescope Uploader so that the data is

stored properly and proper checks are performed.

long_name nvarchar(2000) Viewable name (path) for the file that is used to populate the
popup menu in the Document Info window for file path and

for user searches on file path.

file_type nchar(4) Type of file that is referred to by this rendition (e.g., “TIFF”
or “ESPF”). For display purposes, this field is used to map

into the TYPE_CODES table, which provides a “full-text”

description of the file types.

file_name nchar(255) Simple name of the file without any preceding path.

file_size big integer The size, in bytes, of the original file, which can be used to
determine download times. This field is a ‘bigint’ database
type, which means that Telescope can accurately represent
files whose size is up to 264 bytes (8 million terabytes).

Note: These file sizes may differ from the actual file sizes.

file_info nvarchar(255) Free-form text filled-in during ingest by the I-Piece that
reads the file or by Telescope if the file is a graphic. It

contains general information about the file, such as the
resolution and color depth for images or the sample size and
sample rate for audio assets. This field is displayed as-is to
the user in the Editorial View. The format of this information

is not standardized and can change from one Telescope
version to the next.

create_date timestamp Date the physical file was created on the disk. It is not user-
editable and contains the actual created date of the physical
file.

Note: The original system create and modify dates may not

always be preserved when a file is imported, because of
differences in data handling between different operating
systems.

 Telescope Database Internals Guide

 Page 35 of 162 2/12/19

Field Data Type Description

mod_date timestamp Date the physical file was last modified (as known when the
file was put into the database). There is the danger that this
field will get out of date if the user modifies the document
outside of Telescope, but it can be resynchronized through
the use of the “Synchronize Documents” option.

Note: The original system create and modify dates may not
always be preserved when a file is imported, because of
differences in data handling between different operating
systems.

file_checksum nchar(32) The hexadecimal representation of the checksum for the file.
If the file cannot be found, the entry will be NULL.

Checksum information is used to link placed art back to the
parent document.

Note: This checksum information is customized by Telescope
and cannot be compared with MD5 generated by other tools.

lang_id nchar(10) Identifies the language (from the language_local table,
lang_id column). For example, en_US.

xmp_docid nvarchar(36) If Adobe InDesign files are imported using an older version of
the Xinet plugin, the checksum information may not be
populated into the file_checksum field. Instead, similar
document identification information is stored in this
xmp_docid field.

ED_VERSIONS

The ED_VERSIONS table stores non-primary versions of an asset. When an asset is checked in to Telescope, the

existing asset information is moved to the ED_VERSIONS table, to indicate that it has been versioned. The new

asset’s information is stored in the DOC_RENDITIONS table, as it is now the current version of the asset. When a

new version is created it retains the same filename as the original filename. But the new entry in the

ED_VERSIONS table will have “-x” appended to its filename (where x is the version number). When you download

an asset, you will always get the most recent version of the asset. Note that, when a new version is added to the

system, the thumbnail of the asset is updated to be the same as the latest version added.

Users with special permissions can see, download, and promote a version of an asset. The promoted version will

be the primary version and its version will be updated to reflect the new (updated) version. The following chart

describes the columns in the ED_VERSIONS table.

 Telescope Database Internals Guide

 Page 36 of 162 2/12/19

Field Data Type Description

version_id integer Unique ID generated automatically on insert into the table. In
Oracle, this is a plain integer column with an insert trigger to
populate it from an Oracle sequence.

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table for that file.

rend_id integer Cross-reference to the RENDITIONS table, which indicates
which rendition this record applies to.

file_location nvarchar(2000) Physical file location for the rendition.

long_name nvarchar(2000) Viewable name (path) for the file that is used to populate the
popup menu in the Document Info window for file path and

for user searches on file path.

file_type nchar(4) Type of file that is referred to by this rendition (e.g., “TIFF” or
“ESPF”). For display purposes, this field is used to map into

the TYPE_CODES table, which provides a “full-text”
description of the file types.

file_name nchar(64) Simple name of the file without any preceding path.

file_size big integer The size, in bytes, of the original file, which can be used to
determine download times.

file_info nvarchar(255) Free-form text field filled in during ingest by the I-Piece that
reads the file or by Telescope if the file is a graphic. It
contains general information about the file, such as the
resolution and color depth for images or the sample size and

sample rate for audio assets. This field is displayed as-is to
the user in the Editorial View.

The format of this information is not standardized and can
change from one Telescope version to the next.

create_date timestamp Date the physical file was created on the disk. It is not user-
editable and contains the actual created date of the physical
file.

Note: The original system create and modify dates may not
always be preserved when a file is imported, because of

differences in data handling between different operating

systems.

 Telescope Database Internals Guide

 Page 37 of 162 2/12/19

Field Data Type Description

mod_date timestamp Date the physical file was last modified (as known when the
file was put into the database). This field will get out of date if
the user modifies the document outside of Telescope, but it
can be resynchronized using the “Synchronize Documents”
functionality.

Note: The original system create and modify dates may not
always be preserved when a file is imported, because of
differences in data handling between different operating
systems.

file_checksum nchar(32) The hexadecimal representation of the Checksum for the file.
If the file cannot be found, the entry will be NULL.

Checksum information is used to link placed art back to the
parent document.

vcversion nchar(16) The version number of the asset, used during checkout when
several versions of the same file are being stored. This
version number corresponds to the number added as a suffix
to the file name. (For example, the file Filename-2.docx has
vcversion “2”.)

chkindate datetime
(timestamp)

The timestamp of when the version was checked in.

thumbnail binary The thumbnail image of the version, copied from the

THUMBNAILS table (not the Graphics Broker).

xmp_docid nvarchar(36) If Adobe InDesign files are imported using an older version of
the Xinet plugin, the checksum information may not be
populated into the file_checksum field. Instead, similar
document identification information is stored in this
xmp_docid field.

EDITORIAL

The EDITORIAL table is one of the most important tables in the Telescope database. This table contains a set of

default system-wide metadata for each asset, including the record_id for an asset, which is the link for all the

other metadata tables. It will also usually contain a large part of the user-defined metadata model. .

To appear as metadata fields in the Telescope environment, each new column must be included as a row in the

EXTRA_COLUMNS table. The easiest way to ensure this is all set up correctly is to add new metadata fields

through the Fields tab in the TSAdmin interface. This will ensure all tables are updated correctly.

Data can also be stored in tables other than the EDITORIAL table; moreover, external tables are required for

normalized repeating fields. For details on how to set up external tables, see the instructions included in the

section for the EXTRA_COLUMNS table.

 Telescope Database Internals Guide

 Page 38 of 162 2/12/19

Note: Telescope Administrator is not aware of any database sizing limitations on tables. In a SQL Server

database, for example, the width of a database table (the sum of the data contained in one row) cannot

exceed 8060 bytes (not for tables that contain varchar, nvarchar, varbinary, or sql_variant though). In

environments where the sum of the metadata to be added to the Telescope environment exceeds the storage

limitations of the EDITORIAL table, the data must be normalized into separate tables.

Telescope queries that span external metadata tables take the form of an outer joined select statement. In

environments where the underlying database does not support the outer join functionality, these queries are

achieved through a series of nested selects. Telescope provides users with an ad hoc query tool that can process

a wide range of statements against the database. In most environments, there is a general use trend by the

users. You should monitor the system and tune the underlying Telescope tables to match users’ behavior. Tuning

may include, but is not limited to, adding indexes, functional indexes, rebuilding indexes, distributing data

storage across physical drives, de-fragmenting data storage, and adjusting database system environment

settings.

The following chart describes the default columns in the EDITORIAL table before it is customized. These columns

are on the editorial table by default and are specifically used for functionality within Telescope. There will be

many more columns in the table after a customer’s metadata model is defined.

Field Data Type Description

record_id integer Unique identifying code for the record, which is used to join
the table to subsidiary tables.

member_yn nchar(1) DEPRECATED.

group_yn nchar(1) DEPRECATED.

status nchar(1) A value indicating the checkout status of the document, with

the following values:

NULL – means the file is checked in and available for
checkout.

Y – means the file is checked out for modification and cannot
be checked out by anyone else.

vcversion nchar(16) DEPRECATED.

chkindate datetime
(timestamp)

DEPRECATED.

vcparent integer Used internally by Telescope to link ‘derivative’ assets (i.e.
those created by ‘Promoting’ a version or a video clip to a
sub-asset) to their parent assets.

 Telescope Database Internals Guide

 Page 39 of 162 2/12/19

Field Data Type Description

versioned nchar(1) DEPRECATED.

approvpend nchar(1) Determines whether or not the document is pending approval
(and therefore hidden). If the flag is “Y”, the document is
hidden from users. If the flag is NULL (its normal state), the
document is visible.

(Customer defined
fields)

(Customer
defined)

Any field created within TSAdmin used by the customer.

EDITORIAL SELECTION

The EDITORIAL_SELECTION table is used by the Telescope system to keep a temporary list of assets currently

selected by the user. Do not alter this table in any way.

The following chart describes the columns in the EDITORIAL_SELECTION table.

Field Data Type Description

instance_id nvarchar(10) The ID for the instance running the application (in a clustered
environment).

user_session_id nvarchar(32) A unique session ID assigned to the client’s session when the

user logs in (from the Session Broker).

user_component_id integer The incremented ID for the UI component.

record_index integer The order the record will appear in a container field.

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

EMBEDDED_METADATA

The embedded_metadata table stores embedded metadata (XMP,IPTC,etc) that was extracted by the Metadata I-

Piece. The table is essentially a key-value pair, storing a tag for the extracted metadata and the value for that

tag.

The following chart describes the columns in the EMBEDDED_METADATA table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

 Telescope Database Internals Guide

 Page 40 of 162 2/12/19

Field Data Type Description

tag nvarchar(256) The embedded tag. For example,

 File property tags (the file’s size, for instance)

 XMP tags (the document ID, for instance)

 PDF tags (the PDF version, for instance)

value nvarchar(2000) The values of the embedded metadata, as extracted for the
corresponding tag.

FT_CONTENTS

The FT_CONTENTS table provides full text searches on content in the Telescope environment. Telescope I-Pieces

for asset file types that contain text are responsible for parsing the text content out of the document (Word,

Quark, etc.) and populating the FT_CONTENTS table. There is a context index on the FT_CONTENTS table,

specifically on the FT_TEXT column. The syntax of full text queries submitted from Telescope are formatted as

follows (Oracle example):

select ft.record_id, ft.ft_text, score(1) from dbo.ft_contents ft, dbo.editorial
ed where ft.record_id = ed.record_id and contains(ft.ft_text, ‘about(author)’,
1) > 0 order by score(1) desc

The select statement above returns all entries containing the word “author”. The following chart describes the

columns in the FT_CONTENTS table.

Field Data Type Description

ft_id integer Unique identifier for the content entry.

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

ft_changestamp timestamp The date and time the record was changed.

ft_lang nchar(10) This field is intended for future use.

ft_text nvarchar(max) Plain text contents of the entry.

IANNOTATION

The IANNOTATION table stores information about annotations added to an asset. The following chart describes

the columns in the IANNOTATION table.

Note: Do not edit this autopopulated table; your changes will be overwritten.

 Telescope Database Internals Guide

 Page 41 of 162 2/12/19

Field Data Type Description

user_name nvarchar(32) The user who added the annotation.

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL
table.

mark_up nvarchar(max) The text of the annotation.

last_change timestamp The date and time the annotation was created and/or
updated.

page_num integer The page number within the assets where the annotation is
added.

lang_id nchar(10) Identifies the language (from the language_local table,
lang_id column). For example, en_US.

marker integer An integer field used to mark the location of the annotations.

This enables users to request individual page images and
geometry information for any page of a COV preview.

The units are based on the asset type. For example:

For COV annotations, represents the page number

For video annotations, represents the millisecond offset from

the beginning of the digital video.

INOTES

The INOTES table stores the notes users add to assets in Telescope. The following chart describes the columns in

the INOTES table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL
table.

note_date datetime
(timestamp)

The date-time stamp when the note was added.

note_user nvarchar(32) The user who added the note.

note_text nvarchar(max) The note text.

lang_id nchar(10) Identifies the language (from the language_local table,
lang_id column). For example, en_US.

 Telescope Database Internals Guide

 Page 42 of 162 2/12/19

THUMBNAILS

Thumbnails appear when the user browses through the collection (catalog) view of the assets in Telescope. Every

entry in the EDITORIAL table should also have an entry in the THUMBNAILS table. This table contains the binary

data that portrays the thumbnail version of the asset. Each asset has a single thumbnail representation,

regardless of how many renditions of the asset exist in the system. A NULL entry for the thumbnail data is valid.

The binary data is stored as a 128 x 128 pixel 72 DPI JPEG stream that is by default encrypted.

When a new file is added to Telescope its thumbnail is added to the THUMBNAILS table by the Graphics Broker.

The Telescope I-Pieces are responsible for the supported formats. You can add different I-Pieces to the Graphics

Broker to enable the support for different file formats. If you import a file type that is not supported by

Telescope, the thumbnail image will be set to a default image for that file type, as defined in the TSAdmin

application and stored in the type-codes table. If no such entry exists, the thumbnail will default to an overall

thumbnail (also defined in Telescope). Encrypted by default but can be stored encrypted or unencrypted by

toggling the ENCRYPT_PREVIEW setting in the Graphics Broker registry keys. Changing that setting only changes

the future ingests.

The following chart describes the columns in the THUMBNAILS table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL table.

file_name nchar(255) Simple name of the file without any preceding path.

thumbnail long raw

(varbinary)

Encrypted binary data for the thumbnail that is displayed in

Telescope.

Note: It is possible to put your own 128 x 128 pixel, 72 DPI JPEG

thumbnail into the thumbnail table for any asset. However, if the

asset is synced this thumbnail will be replaced with the one

defined by the poplulating I-Piece.

VIEWEX

The VIEWEX table specifies the data type for each asset, and this determines the type of extended view (preview)

that will be shown to TSWeb users for that asset.

For image files (data_type “JPEG”), this table stores a medium-sized binary representation in the table’s viewex

field. For all other types of files, the preview data is stored elsewhere For example, in the DOC_RENDITIONS table

for video renditions, or in the COV_PAGES table for component object view (COV) files, which are files that have

multiples pages associated with them (like Office, Quark, and InDesign documents).

 Telescope Database Internals Guide

 Page 43 of 162 2/12/19

The exact specifications for the representation for each data type is determined by the XML (“prefsML”) file of

the I-Piece that is interpreting and populating the data. For details on XML file settings, see the prefsML section

in the manual for the respective I-Piece.

The following chart describes the columns in the VIEWEX table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL table.

file_name nchar(255) DEPRECATED.

 Telescope Database Internals Guide

 Page 44 of 162 2/12/19

Field Data Type Description

data_type nchar(4) Defines the file type, which is used to determine the type of preview

shown to the user on TSWeb. This information is provided by an I-

Piece when it populates the viewex table. Possible values include the

following:

COVv: The asset requires a multi-page component Object View

(COV) preview. The format of these previews is defined in the

COV_INFO table, and the data for these previews is stored in the

COV_PAGES table.

JPEG: The asset is an image file, and an image preview will be

shown. The image preview is stored as a smaller JPEG

representation in the viewex field of this VIEWEX table.

MP3 or MP4: The asset preview is an audio (MP3) or a video (MP4)

preview. Other audio/video file types are:

 ViRa: A Video Manager (VM) preview.

 FLSH: An Adobe Flash preview.

 TPlt: A preview created from a Telescope Playlist.

Unless they are explicitly identified as FLSH, TPlt, or ViRa, all

audio/video files are given data types MP3 (for audio) or MP4 (for

video with or without audio). For MP3/MP4 data types, previews

play back in the HTML5 player without the additional VM functions

of keyframes, clips, and so on.

Audio/video previews are stored in the DOC_RENDITIONS table.

Their proxy is identified by the rendition ID associated with the

ip_viravideorendition (for VM) or ip_proxyrendition (for non-VM)

keywords in the DB_SETTINGS table (see the descriptions in that

table for details). This rendition ID can be either a valid rend_id

cross-reference to the RENDITIONS table, or a URL if

ip_viravideorendition or ip_proxyrendition is configured with

‘vl_proxies.url.’

 Telescope Database Internals Guide

 Page 45 of 162 2/12/19

Field Data Type Description

viewex binary When the data_type field is “JPEG”, this field contains a binary JPEG

version of the image, , which is typically a medium resolution JPEG

file of 512 x 512 pixel resolution, 72 DPI, but can be configured to

1024x1024.

If the data_type field is not “JPEG”, this field has a NULL value.

The I-Piece that handles the file is responsible for determining and

interpreting the contents of this field..

Note that this extended view data can be encrypted, as determined

by the Graphics Broker registry key ENCRYPT_PREVIEW.

VL_ANNOTATIONS

The VL_ ANNOTATIONS table contains the annotation buttons created by the user. The following chart describes

the columns in the VL_ ANNOTATIONS table.

Field Data Type Description

button_id integer A unique identifier for the button.

set_id integer The ID of the annotation set the button belongs to.

texttrack_id integer The ID of the text track the annotation will be written to.

button_type integer Not currently in use.

mark_type integer Indicates whether the button is a mark in or a mark out
button.

name nvarchar(256) The name of the button as it appears in the Telescope
interface.

description nvarchar(256) The annotation text that will be written to the text track.

staticpopupdata nvarchar(2000) The options that appear in the button popup list, separated
by pipe characters “|”.

customsql nvarchar(2000) The custom SQL to run when the button is clicked.

hotkey nvarchar(32) The combination of keys that perform the same function as

clicking the button.

 Telescope Database Internals Guide

 Page 46 of 162 2/12/19

VL_ANNOTATIONSETS

The VL_ANNOTATIONSETS table contains the annotations sets created by the user. The following chart describes

the columns in the VL_ANNOTATIONSETS table.

Field Data Type Description

set_id integer A unique identifier for the annotation set.

name nvarchar(256) The name of the annotation set as it appears in the Telescope
interface.

owner nvarchar(32) The user_name of the user who created the clip. Cross-
reference to the USERS table.

VL_CLIPS

The VL_CLIPS table contains the user-defined clip information for time-based extended views and the in and out

timestamps for the clip. A fixed schema is defined for clip information, with generic fields that may be useful to

the user defining the clip. The following chart describes the columns in the VL_CLIPS table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL

table.

in_msec integer In-time for the text, in milliseconds, from the beginning of the
video.

out_msec integer Out-time for the text, in milliseconds, from the beginning of
the video.

in_smpte nchar(12) In-time for the text, represented in SMPTE time code, if it is
encoded in the incoming video stream.

out_smpte nchar(12) Out-time for the text, represented in SMPTE time code, if it is
encoded in the incoming video stream.

title nvarchar(255) DEPRECATED.

subject nvarchar(255) DEPRECATED.

source nvarchar(255) DEPRECATED.

content_date timestamp Date for the clip (this may be the date the clip was taken or
some other date useful to the user).

aux_1 nvarchar(255) Extra field 1.

 Telescope Database Internals Guide

 Page 47 of 162 2/12/19

Field Data Type Description

aux_2 nvarchar(255) Extra field 2.

clips_description nvarchar(max) Clip description entered by the user.

clip_id integer A number representing the clip.

public_yn nchar(1) Indicates whether the clip is public or private.

owner nvarchar(32) The user_name of the user who created the clip. Cross-

reference to the USERS table.

VL_INFO

The VL_INFO table stores information captured by video processing software. The following chart describes the

columns in the VL_INFO table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL

table.

start_offset integer The start time, in milliseconds, of a video clip.

end_offset integer The end time, in milliseconds, of a video clip.

last_update datetime
(timestamp)

Indicates when the clip was last updated.

frame_rate real The video frame rate used for converting to SMPTE timecode.

tape_offset integer The difference (in milliseconds) between the beginning of the

physical tape and the start of the digital file.

duration big integer The length of the video in milliseconds.

VL_PLAYLISTS

The VL_PLAYLISTS table contains the user-defined playlists. Each playlist clip is defined by a record in this table

with a unique playlist_id. The following chart describes the columns in the VL_PLAYLISTS table.

Note: If ip_viravideorendition in the DB_SETTINGS table is configured with ‘vl_proxies.url’ (that is, if the parent

asset of the clip has a URL entry in VL_PROXIES table), then the entry created in the VL_PLAYLISTS table is always

populated whenever clips are added to a playlist.

 Telescope Database Internals Guide

 Page 48 of 162 2/12/19

Field Data Type Description

playlist_id integer A unique identifier for the playlist..

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL

table.

in_msec integer The in time, in milliseconds, of the playlist clip relative to the
playlist asset.

out_msec integer The out time, in milliseconds, of the playlist clip relative to
the playlist asset.

title nvarchar(255) The playlist clip title.

asset_id integer The asset_id of the video asset the clip is derived from.

rend_id integer The rendition of the video asset the clip is derived from.

url nvarchar(255) The proxy URL for the clip. This field is populated when clips

are added to a docked playlist. It is copied from the url field
of the VL_PROXIES table via triggers.

asset_in_msec integer The in time, in milliseconds, of the clip relative to the video
asset the clip is derived from.

asset_out_msec integer The out time, in milliseconds, of the clip relative to the video
asset the clip is derived from.

VL_PROXIES

The VL_PROXIES table stores any streaming video proxies for time-based extended views that are not “physical”

files, such as Real Video Server streams, etc. The following chart describes the columns in the VL_PROXIES table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL

table.

mime_type nvarchar(64) MIME type of the proxy; for example, “application/mpeg”.

url nvarchar(255) The URL to get to the video proxy.

pixel_height integer Height in pixels of the video proxy.

pixel_width integer Width in pixels of the video proxy.

frame_rate real Frame rate of the video proxy.

 Telescope Database Internals Guide

 Page 49 of 162 2/12/19

VL_TEXT

The VL_TEXT table contains text tracks extracted from the video for time-based extended views and the in and

out timestamps for when the text was extracted. The following chart describes the columns in the VL_TEXT table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL

table.

in_msec integer In-time for the text, in milliseconds, from the beginning of the

video.

out_msec integer Out-time for the text, in milliseconds, from the beginning of

the video.

in_smpte nchar(12) In-time for the text, represented in SMPTE time code, if it is
encoded in the incoming video stream.

out_smpte nchar(12) Out-time for the text, represented in SMPTE time code, if it is
encoded in the incoming video stream.

track_id big integer A decimal value that indicates the type of text track this is.
These types are stored in the VL_TRACKS table; refer to that
table for a list of possible values.

confidence integer Integer between 0 and 100 indicating the degree of

confidence in the contents of the text (this is mostly used for
auto-generated text where there is a possibility of errors in
the recognized text).

text_data nvarchar(max) Actual text extracted from the video stream.

lang_id nchar(10) Identifies the language (from the language_local table,
lang_id column). For example, en_US.

VL_THUMBNAILS

The VL_THUMBNAILS table contains all of the thumbnails extracted from a video for time-based extended views

and the in and out timestamps for when the thumbnail appears in the video stream. The following chart

describes the columns in the VL_THUMBNAILS table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL

table.

 Telescope Database Internals Guide

 Page 50 of 162 2/12/19

Field Data Type Description

in_msec integer In-time for the thumbnail, in milliseconds, from the beginning
of the video.

out_msec integer Out-time for the thumbnail, in milliseconds, from the
beginning of the video.

in_smpte nchar(12) In-time for the thumbnail, represented in SMPTE time code, if

it is encoded in the incoming video stream.

out_smpte nchar(12) Out-time for the thumbnail, represented in SMPTE time code,

if it is encoded in the incoming video stream.

thumbnail binary Actual thumbnail, representing the keyframe. This will always
be stored in JPEG format.

VL_TRACKS

The VL_TRACKS table contains the text tracks defined for video assets. Nine tracks are added to the database

automatically by the Database Manager (DBManager) application when the database is created or updated. The

following chart describes the columns in the VL_TRACKS table.

Field Data Type Description

track_id big integer A decimal value that represents the possible track type. See
the list below.

track_name nvarchar(32) The name of the track, as users will see it in the Telescope
application. See the list below.

Track ID Values

The following decimal values are defined in the track ID column for both the VL_TEXT and VL_TRACKS tables.

They are generated from the hex values of 4-character codes, as shown in the table below.

Decimal value

(in the track_ID

column)

TSAdmin Name

(in the track_name

column)

4-character

code

Hex value

1667462264 Closed Caption cctx 0x63637478

1953264760 Teletext tltx 0x746C7478

 Telescope Database Internals Guide

 Page 51 of 162 2/12/19

1634627183 Annotatio anno 0x616E6E6F

1635083372 Audio Classification audl 0x6175646C

1936745320 Speech-to-Text spch 0x73706368

1936746852 Speaker ID spid 0x73706964

1717791076 Face Recognition faid 0x66636964

1868788340 On-Screen OCR ocrt 0x6F637274

1397117774 Speech-to-text sfsc 0x5346534E

ZOOM_INFO

The ZOOM_INFO table store the zoom info cache information, which will be loaded by the Zoom Broker when it

starts, and updated when the cache changes. The following chart describes the columns in the ZOOM_INFO

table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL

table.

rend_id integer The rend_id of the image asset.

file_location nvarchar(2000) The physical file location for the rendition.

long_name nvarchar(2000) Viewable name (path) for the file that is used to populate the
popup menu in the Document Info window for file path and
for user searches on file path.

file_type nchar(4) The type of file that is referred to by this rendition (e.g.,
“TIFF” or “ESPF”). For display purposes, this field is used to

map into the TYPE_CODES table, which provides a “full-text”
description of the file types.

file_name nchar(255) A simple name of the file without any preceding path.

file_size big integer The size, in bytes, of the original file, which can be used to
determine download times. This field is a ‘bigint’ database
type, which means that Telescope can accurately represent
files whose size is up to 264 bytes (8 million terabytes).

 Telescope Database Internals Guide

 Page 52 of 162 2/12/19

Field Data Type Description

file_info nvarchar(255) Free-form text filled-in during ingest by the I-Piece that reads
the file or by Telescope if the file is a graphic. It contains
general information about the file, such as the resolution and
color depth for images or the sample size and sample rate for
audio assets. This field is displayed as-is to the user in the

Editorial View. The format of this information is not
standardized and can change from one Telescope version to
the next.

create_date timestamp Date the physical file was created on the disk. It is not user-

editable and contains the actual created date of the physical
file.

Note: The original system create and modify dates may not
always be preserved when a file is imported, because of
differences in data handling between different operating
systems.

mod_date timestamp Date the physical file was last modified (as known when the
file was put into the database). There is the danger that this
field will get out of date if the user modifies the document
outside of Telescope, but it can be resynchronized through

the use of the “Synchronize Documents” option.

Note: The original system create and modify dates may not
always be preserved when a file is imported, because of
differences in data handling between different operating

systems.

file_checksum nchar(32) The hexadecimal representation of the checksum for the file.
If the file cannot be found, the entry will be NULL.

Checksum information is used to link placed art back to the
parent document.

Note: This checksum information is customized by Telescope

and cannot be compared with generated by other tools.

xmp_docid nvarchar(36) If Adobe InDesign files are imported using an older version of
the Xinet plugin, the checksum information may not be

populated into the file_checksum field. Instead, similar
document identification information is stored in this
xmp_docid field.

page_no integer The page number within the assets that is zoomed. This is
applicable to PDF files only.

 Telescope Database Internals Guide

 Page 53 of 162 2/12/19

Functional Rules Tables

The Telescope Functional Rules engine is a powerful feature that gives Telescope Administrators an almost

unlimited ability to customize the operation of their Telescope installations to meet the business requirements of

their organization. Functional Rules are a complex, scripting-based feature, and the intent of this document is

not to explain Functional Rules in detail, but to describe how they are stored and managed within the Telescope

database itself. See the Telescope – Administrator’s Reference Manual for more information about Functional

Rules in Telescope.

FN_MESSAGES

The FN_MESSAGES table contains the text of error messages that are returned from the execution of a rule that

fails. It associates function return codes with messages that are returned to users. The following chart describes

the columns in the FN_MESSAGES table.

Field Data Type Description

fm_id integer A unique key for this table.

rule_id integer The ID of the rule to which this message pertains.

result_code integer The result code which will cause this message to be
generated. A result code of 0 (zero) in this field indicates the
“default” error message that will be returned for any
functional return codes not explicitly listed for the rule.

Use a number below -10. (-1 through -10 are reserved, and
positive numbers are not used for error messages.)

err_text nvarchar(255) The text of the error message to be returned to the user. This

text can contain parameter substitutions as well as actual
text.

FN_RULES

The FN_RULES table stores the information about the functional rules defined for the system. The following chart

describes the columns in the FN_RULES table.

Field Data Type Description

rule_id integer The unique ruleID associated with this functional rule.

 Telescope Database Internals Guide

 Page 54 of 162 2/12/19

Field Data Type Description

rule_name nvarchar(255) The name of the rule as it gets displayed to the administrator.

Tip: This text may appear in a menu, so do use a descriptive
name.

test_func nvarchar(2048) The SQL script to be executed as the test function, including
parameter replacement tags.

challenge_form nvarchar(4000) The XML representation of the challenge form, including
parameter replacement tags. If this column is empty, then
there is no challenge form, and the RESPONSE_FUNC column

will be ignored by Telescope.

response_func nvarchar(2048) The SQL script to be executed as the response function,
including parameter replacement tags. If the
CHALLENGE_FORM column is empty, then this column’s value
is ignored by Telescope.

FN_RULESETS

The FN_RULESETS table associates sets of rules with particular user groups, and particular actions. The following

chart describes the columns in the FN_RULESETS table.

Field Data Type Description

fr_id integer A unique key for this table. This is an administrative ID,
generated by the Telescope Admin application.

group_name nvarchar(32) The user group to which this group applies. This is a reference
to the USERS.USER_NAME field for a user group.

 Telescope Database Internals Guide

 Page 55 of 162 2/12/19

Field Data Type Description

action_code integer A numeric code representing the action to which this rule
should be applied. Valid values for this field are:

1 Copy

2 Metadata Update

3 Delete

4 Import (pre-flight). This action code was simply “Import”
prior to Version 9.3.1, and typically was executed post-flight
(except for the Telescope Uploader, which executed this
action pre-flight).

6 Move

7 Drag (DEPRECATED)

8 Check out

9 Check in

10 Update

11 Attach Rendition

12 Open Extended View

13 Order

14 Conversions

15 Add to Collection (Catalog)

16 Remove from Collections (Catalog)

17 Menu Rule

18 Login

19 QuickLinks

20 Access Collections (Catalogs)

41 Import (post-flight).

ruleset_order integer An integer indicating the ordering of the rule in the ruleset for
this group, for this action.

rule_id integer A reference back to the FN_RULES table for the rule that
should be applied at this position in the ruleset.

FN_WATERMARKS

Whether a watermark is displayed is controlled by Functional Rules triggered by the “Extended View’” event. The

result of the Test Function should be a watermark_id from the FM_WATERMARKS table. The associated image

becomes the watermark. The following chart describes the columns in the FN_WATERMARKS table.

Field Data Type Description

watermark_id integer A positive integer that matches a return code from the “view

extended view” functional rule.

 Telescope Database Internals Guide

 Page 56 of 162 2/12/19

Field Data Type Description

watermark_name nvarchar(255) A text description field for the watermark. Telescope doesn’t
use this field directly, but it would be useful as a lookup from
the Functional Rule itself, so that the ID of the watermark
doesn’t need to be hard-coded in the Functional Rule.

watermark_image binary The image to be used as the watermark. This is a binary
column whose data must be in JPEG, PNG or GIF format. To
be appropriately overlaid over the extended view image, the
watermark image should have an alpha channel, which
requires either PNG or GIF formats.

 Telescope Database Internals Guide

 Page 57 of 162 2/12/19

Order Entry Tables

Telescope provides a complete and flexible order entry system. See the “Fulfillers” chapter in the Telescope

Administrator’s Reference Manual for details on how to administer and maintain order entries.

The following tables manage and store data about the structure of the order entry system, and the orders placed

by users.

EXT_ADDRESSES

The EXT_ADDRESSES table contains “address book” entries used by the Order Entry component of Telescope.

This information is required for orders that are physically shipped to their recipients. Each user may have and

maintain their own address book. The following chart describes the columns in the EXT_ADDRESSES table.

Field Data Type Description

id integer A unique key for this table, automatically generated.

user_name nvarchar(32) The user for which this address book entry applies.

addr_name nvarchar(32) The user’s “helpful name” for this address, for example,
“Home” or “Work”.

contact_name nvarchar(255) Address information.

company_name nvarchar(128) Address information.

department nvarchar(128) Address information.

address_1 nvarchar(255) Address information.

address_2 nvarchar(255) Address information.

city nvarchar(64) Address information.

state nvarchar(64) Address information.

country nvarchar(64) Address information.

postzip nvarchar(32) Address information.

phone_number nvarchar(32) Address information.

email nvarchar(128) Address information.

 Telescope Database Internals Guide

 Page 58 of 162 2/12/19

OE_ARCHIVE

The OE_ARCHIVE table contains the archived copies of orders that are moved out of the order processing table

structure by the Auto-Archive process. The following chart describes the columns in the OE_ARCHIVE table.

Field Data Type Description

archive_id integer A unique key for this table. This is a “transparent” identifier
for Telescope that is populated automatically when a record is

inserted into this table. It is a true “identity” column in SQL
Server, and an integer populated by a sequence and an insert

trigger in Oracle.

from_category nvarchar(64) The name (i.e. the fulfiller_category field from the
OE_FULFILLERS table) of the fulfiller category to which the
fulfiller of this order belongs. Over time, users may be moved
from one fulfiller category to another, be “demoted” from
being a fulfiller, or be deleted from the database entirely. In
this case, it is useful to know what fulfiller category the
fulfiller user (whose user_name is captured in the order

archive XML) belonged to at the time the order was archived.

archive_date datetime
(timestamp)

The date and time the order was removed from the order
processing tables and added to the archive.

order_text nvarchar(max) XML formatted text that contains all of the information about
the order at the time it was moved to the archive.

OE_ASSETMETADATA

The OE_ASSETMETADATA table contains the metadata information for a specific order against a specific asset

within that order. Order forms may have an unlimited number of form fields in their HTML definition. Any

additional fields on the form that are not otherwise used by the order entry system are gathered by Telescope

as order ‘metadata’, and stored in the OE_ASSETMETADATA table for reference. The following chart describes the

columns in the OE_ASSETMETADATA table.

Field Data Type Description

order_id integer The ID of the order to which this metadata belongs.

position integer The position (1 to n) of the metadata field on the form. This is
used to provide consistency in the display of the form to the
user after the form has been submitted.

 Telescope Database Internals Guide

 Page 59 of 162 2/12/19

Field Data Type Description

fieldname nvarchar(255) The name of the form field from which the data comes. If the
field on the form has multiple values (for example, a multi-
select list), then there will be multiple instances of the same
fieldname record in the table for this order. The position value
then determines which order the individual items are listed

within the specific field.

When the form designer designs the HTML order form, they
should give the field names which take into account the fact
that they will be converted to a “human friendly” format by
replacing underscores with spaces and then capitalizing the

first letter of each word. So, “shipping_mode” is a good field
name (as it will be translated into “Shipping Mode”), whereas

“shmod” is not, since it will be translated into “Shmod”.

value nvarchar(255) The value of the field.

OE_ASSETOUTVALS

The OE_ASSETOUTVALS table lists possible output formats for each asset (Transparency, etc.). The following chart

describes the columns in the OE_ASSETOUTVALS table.

Field Data Type Description

fulfiller_id integer The fulfiller for whom the order output values apply.

val_id integer A value (1 to n) where n is the number of values for a given
fulfiller. Used to order the values in the menu.

valuestr nvarchar(64) Description of the output format.

quantity_yn nchar(1) A flag that indicates whether this output format requires a
quantity or not. For example, “Transparency” would require a
value separate from the rest of the order, because the user
could want different numbers of items for each transparency

they order. However, “Electronic” for example, would not
require a quantity since it is an electronic delivery method,
and specifying a quantity doesn’t make much sense.

When the user fills out the order form, if they select any asset
output formats for which quantity_yn is “N”, then the
OrderFormat component will appear on the order form, so the

user can specify an overall order number and format (for
example “2” and “CD” to indicate how the “Electronic” files
are to be delivered).

 Telescope Database Internals Guide

 Page 60 of 162 2/12/19

OE_ASSETS

The OE_ASSETS table lists all assets associated with an order. The following chart describes the columns in the

OE_ASSETS table.

Field Data Type Description

order_id integer The ID of the order to which the asset belongs.

position integer The position (1 to n) of the item in the order.

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL

table being ordered.

rend_id integer The rendition ID of the ordered file.

asset_status nvarchar(255) The status of the ordered asset. When the order is first
created, this is set to the “initial” value from the
OE_ASSETSTATVALS table. In the event of an error
converting or copying the asset to the fulfiller’s fulfillment
location, this status will be set to the “error” value from the
OE_ASSETSTATVALS table.

conv_str nvarchar(4000) The conversion string selected for the file, if any. This is a File
Conversion Broker formatted conversion string.

quantity integer The quantity ordered.

out_format nvarchar(255) The output format selected for the ordered file (values come

from the OE_ASSETOUTVALS table).

final_location nvarchar(512) A human-readable path to the final location of the copied and
converted file.

version_id integer The version ID of the asset required. Cross-reference to
ed_versions.version_id.

OE_ASSETSTATVALS

The OE_ASSETSTATVALS table lists all possible status values for each asset. The following chart describes the

columns in the OE_ASSETSTATVALS table.

Field Data Type Description

fulfiller_id integer The fulfiller for whom the asset output values apply.

val_id integer A value (1 to n) where n is the number of values for a given
fulfiller. Used to order the values in the menu.

valuestr nvarchar(64) Description of the status.

 Telescope Database Internals Guide

 Page 61 of 162 2/12/19

Field Data Type Description

error_yn nchar(1) Whether this is the “error” value for the asset’s status value

initial_yn nchar(1) Whether this is the initial value for the asset’s status value.

OE_FULFILLERS

Any user in the Telescope system can be made a fulfiller, which indicates that they are notified when orders are

placed, and are responsible for fulfilling orders placed by other users. When a user places an order, they choose

a fulfiller to handle the order. Fulfillers are divided into multiple fulfiller ‘categories’, which can have different

properties, such as order forms, etc. The following chart describes the columns in the OE_FULFILLERS table.

Field Data Type Description

fulfiller_id integer A unique key for this table, automatically generated.

fulfiller_category nvarchar(64) The user-friendly name of the “category” of the fulfiller. This
is useful if there are multiple user records which share a

single OE_FULFILLER record, in which case this name will
group the fulfiller users together in the fulfiller popup menu in
the event that a user can see multiple fulfillers in the same
category.

order_broker nvarchar(64) The name of the File Broker where the ordered assets will be
placed when a user orders files, and chooses this user as the
fulfiller. If left blank, no order preparation is done by the
system (i.e. manual order preparation).

order_share nvarchar(64) The name of the share on order_broker (above) where the
order assets will be placed when a user orders files, and
chooses this user as the fulfiller.

order_html nvarchar(64) The name of the HTML file that will be used for this fulfiller’s
order form. This value can be left empty to specify the default
order form.

category_submit nchar(10) Indicates what an ordering user will see in the Fulfillers list
when they place an order. Valid values for this field are:

Off – ordering users will see a list of user names in the
Fulfillers list.

On – ordering users will see both user names and Fulfiller
Category names in the Fulfillers list.

Require – ordering users will see only Fulfiller Categories in
the Fulfillers list.

 Telescope Database Internals Guide

 Page 62 of 162 2/12/19

OE_METADATA

The Order Fulfillment Module (OFM) allows for metadata within the order to be tied either to the order (overall)

or to individual assets within the order. The OE_METADATA table contains metadata information that was

entered that is specific to the overall order. The following chart describes the columns in the OE_METADATA

table.

Field Data Type Description

order_id integer The ID of the order to which this metadata belongs.

position integer The position (1 to n) of the metadata field on the form. This is

used to provide consistency in the display of the form to the
user after the form has been submitted.

fieldname nvarchar(255) The name of the form field from which the data comes. If the

field on the form has multiple values (for example, a multi-
select list), then there will be multiple instances of the same
fieldname record in the table for this order. The position value
then determines which order the individual items are listed
within the specific field.

When the form designer designs the HTML order form, they
should give the field names which take into account the fact

that they will be converted to a “human friendly” format by
replacing underscores with spaces and then capitalizing the
first letter of each word. So, “shipping_mode” is a good field

name (as it will be translated into “Shipping Mode”), whereas
“shmod” is not, since it will be translated into “Shmod”.

value nvarchar(255) The value of the field.

OE_ORDERS

The OE_ORDERS table is the base order entry table. For each order placed in the system, there is an entry in the

OE_ORDERS table. The following chart describes the columns in the OE_ORDERS table.

Field Data Type Description

order_id integer A unique key for this table that is generated automatically for
the order.

user_name nvarchar(32) The user who placed the order.

order_status nchar(32) The status of the order. The possible values in this field will
come from the OE_STATVALS table.

date_placed timestamp The date and time the order was originally placed by the user.

 Telescope Database Internals Guide

 Page 63 of 162 2/12/19

Field Data Type Description

date_fulfilled timestamp The date and time the order was “fulfilled” by the fulfiller.
This is the date and time that the order’s ORDER_STATUS
value was set to the “final” value by the fulfiller. If the order
has never had its ORDER_STATUS value set to the “final”
value by the fulfiller, then this column contains NULL.

last_modified timestamp The date and time the order was last modified, by anyone.

last_assigned timestamp The date and time the order’s fulfiller was changed. When the
order is initially placed, this column contains the same date

and time as date_placed.

contact_name nvarchar(255) Address information.

company_name nvarchar(128) Address information.

department nvarchar(128) Address information.

address_1 nvarchar(255) Address information.

address_2 nvarchar(255) Address information.

city nvarchar(64) Address information.

state nvarchar(64) Address information.

country nvarchar(64) Address information.

postzip nvarchar(32) Address information.

phone_number nvarchar(32) Address information.

email nvarchar(128) Address information.

order_quantity integer Quantity for this order.

order_outformat nchar(255) Output format for this order.

fulfiller_user nvarchar(32) The user who is the fulfiller for this order.

OE_OUTVALS

The OE_OUTVALS table lists possible output formats for the entire order (CD, DVD, ZIP, etc.) The following chart

describes the columns in the OE_OUTVALS table.

Field Data Type Description

fulfiller_id integer The fulfiller the order output values apply to.

 Telescope Database Internals Guide

 Page 64 of 162 2/12/19

Field Data Type Description

val_id integer A value (1 to n) where n is the number of values for a given
fulfiller. Used to order the values in the menu.

valuestr nvarchar(64) Description of the output format.

OE_STATVALS

The OE_STATVALS table lists all possible values for the order status. The following chart describes the columns in

the OE_STATVALS table.

Field Data Type Description

fulfiller_id integer The fulfiller the asset output values apply to.

val_id integer A value (1 to n) where n is the number of status values for a
given fulfiller used to order the values in the menu.

value_text nvarchar(64) The status value.

initial_yn nchar(1) Whether this is the “initial” value for the order status when it

is placed.

final_yn nchar(1) Whether this is the “final” or “closed” value for the order
status.

trigger_script nvarchar(255) SQL script to execute when the order’s status changes to this
value. In the text of this script, the token “<!order_id!>” will
be replaced with the order_id of the order.

 Telescope Database Internals Guide

 Page 65 of 162 2/12/19

User Tables

The Telescope USERS table stores information about each user and group in the system. It is used to

authenticate users by their username and password values when they log in. The Authentication Broker can be

configured to use other authentication methods, such as LDAP. The users and group permissions are also stored

in the USERS table.

Other tables used to define users include:

 DOWNLOAD_QUEUE: stores the user’s download cart for Telescope

 EXTENDEDVIEW_FIELDS: PARAVIEW_FIELDS, TEXTVIEW_FIELDS and TNAILVIEW_FIELDS: store user

preferences about which metadata fields they wish to view in the various Telescope display modes.

 VIEW_… tables: This set of tables define users and group visibility privileges (i.e. which system objects,

such as searches, metadata fields, etc., users have permission to see).

ANNOUNCEMENT_LIST_GROUPS

The ANNOUNCEMENT_LIST_GROUPS table stores the names of user groups and the announcement lists to which

they are subscribed to. The following chart describes the columns in the ANNOUNCEMENT_LIST_GROUPS table.

Field Data Type Description

group_name nvarchar(32) User name of the group for whom subscribing to the associated

announcement list. Cross-reference to the user_name field in the

USERS table.

list_id integer The ID for the announcement list. Cross-reference to the

ANNOUNCEMENT_LISTS table.

ANNOUNCEMENT_LIST_MODERATORS

The ANNOUNCEMENT_LIST_MODERATORS table stores the names of user groups and the announcement lists to

which they are subscribed. The following chart describes the columns in the

ANNOUNCEMENT_LIST_MODERATORS table.

Field Data Type Description

 Telescope Database Internals Guide

 Page 66 of 162 2/12/19

Field Data Type Description

user_name nvarchar(32) User name of the user with moderator rights (add, change,
delete, send to users) for a particular list. Cross-reference to
the user_name field in the USERS table.

list_id integer The ID for the announcement list. Cross-reference to the
ANNOUNCEMENT_LISTS table.

ANNOUNCEMENT_LISTS

The ANNOUNCEMENT_LISTS table stores the names of announcement lists. The following chart describes the

columns in the ANNOUNCEMENT_LISTS table.

Field Data Type Description

list_id integer The ID for the announcement list.

list_name nvarchar(32) Convenience name of the announcement list.

ANNOUNCEMENTS

The ANNOUNCEMENTS table stores the information about individual announcements. The following chart

describes the columns in the ANNOUNCEMENTS table.

Field Data Type Description

announcement_id integer The ID for the announcement.

list_id integer The ID for the announcement list. Cross-reference to the
ANNOUNCEMENT_LISTS table.

sent_date datetime

(timestamp)

The date and time when the announcement is initially

broadcast. This is referenced to allow Telescope to
determine which announcements a logged-in user has not

seen, and mark them as “New”.

sending_user nvarchar(32) The user name of the creator of this announcement.

attached_catalog integer ID of a collection (catalog) to be sent with this
announcement.

 Telescope Database Internals Guide

 Page 67 of 162 2/12/19

Field Data Type Description

attached_action nvarchar(10) This field determines how to view the attached collection
(catalog). Possible values are:

catalog – Displays all assets in the collection.

Details – Display the document information for the first
asset in the collection.

Preview – Displays the extended view for the first asset in
the collection.

announcement_title nvarchar(255) The subject of the announcement which will display

above/before the announcement_text.

announcement_text nvarchar(4000) The body of the message. HTML tags are allowed.

lang_id nchar(10) Identifies the language (from the language_local table,
lang_id column). For example, en_US.

DOWNLOAD_QUEUE

The DOWNLOAD_QUEUE table lists all of the documents that the user has selected for download using

Telescope. This list is preserved between logins for users.

There may be environments where it is known that a specific user under specific circumstances will download an

asset. In order to streamline workflow, a customization could be created to automatically populate that user’s

download basket and send the user an email indicating that the asset is ready for download. This would be

useful in an environment where a user “orders” an asset and has to wait for the request to be processed.

The following chart describes the columns in the DOWNLOAD_QUEUE table.

Field Data Type Description

id identity Unique ID generated automatically on insert to the table. On
Oracle, this is a plain integer column with an insert trigger to

populate it from an Oracle sequence.

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL

table.

user_name nvarchar(32) The user who initiated the download or added the asset to the
download queue.

rendition integer Cross-reference to the DOC_RENDITIONS table, indicating the
rendition of the document that the user has chosen to

download.

 Telescope Database Internals Guide

 Page 68 of 162 2/12/19

Field Data Type Description

status integer Code representing the status of the download operation. Valid
values for this field are:

1 Pending download

2 In Progress

3 Error

4 Pending Approval

5 Pending Checkout

errmsg nvarchar(255) If a document does not download successfully, its status

value will be set to “3”, and its errmsg field will contain a

descriptive error message.

conv_string nvarchar(max) A conversion string the user defined for the file to be
downloaded. This string is sent verbatim to the

FBOpenConvert call of the File Broker. It is also displayed in
the download basket next to the convert button. If this field is
empty, no conversion is applied to the downloaded file and
the following field is not used.

Note that a chain conversion is allowed here. Chain
conversion as separated by the pipe character “|”.

conv_broker nvarchar(255) Name of the File Broker that can perform the above
conversion. Instead of locating a File Broker to download the
file from in the normal way, Telescope uses this specific File

Broker for this file.

copycov_yn nchar(1) This flag is available for COV documents only. A value of “Y”
in this field indicates that the user has chosen to download
the placed documents as well.

actor_name nvarchar(60) The user who actually performed the download and the name
that will be added to the access history table. Primarily this is
for functionality such as QuickLinks, where the user
performing the download is not a user on the Telescope

database.

fr_conv_string nvarchar(max) When the “copy files” functional rule is executed, it may
return a conversion string which is “forced” onto the file at

download time. Because the functional rule is executed by
Telescope and the conversion is executed later by the

Download Manager, the conversion string returned by the
functional rule must be stored here in the download_queue
table to pass to the Download Manager.

This string can contain a “chained” conversion, delimited by
the pipe “|” character and it should be appended to the end of

the string contained in conv_string, if any.

This string will begin with a pipe “|” character so that, when
appended to the conv_string, it will create a proper chained
conversion string.

 Telescope Database Internals Guide

 Page 69 of 162 2/12/19

Field Data Type Description

version_id integer Cross-reference to the ED_VERSIONS table for this version.

EXTENDEDVIEW_FIELDS

The EXTENDEDVIEW_FIELDS table stores user preferences about which fields users want to see on each preview

in the extended view. The following chart describes the columns in columns in the EXTENDEDVIEW_FIELDS table.

Field Data Type Description

user_name nvarchar(32) User name of the user for whom this preference applies. This
value refers back to the user_name field in the USERS table.

first_field nvarchar(64) The name of the first field from the metadata model to show
in the extended view. This is the column_name field in the

EXTRA_COLUMNS table.

second_field nvarchar(64) Same as above, second field.

third_field nvarchar(64) Same as above, third field.

fourth_field nvarchar(64) Same as above, fourth field.

rendition integer Default rendition (from DOC_RENDITIONS) that is displayed
in elements of this view.

PARAVIEW_FIELDS

The PARAVIEW_FIELDS table stores user preferences about which fields users want to see in the paragraph view.

The following chart describes the columns in the PARAVIEW_FIELDS table.

Field Data Type Description

user_name nvarchar(32) User name of the user for whom this preference applies.
Cross-reference to the user_name field in the USERS table.

first_field nvarchar(64) The name of the first field from the metadata model to show
in the paragraph view. This is the column_name field in the
EXTRA_COLUMNS table.

second_field nvarchar(64) Same as above, second field.

third_field nvarchar(64) Same as above, third field.

fourth_field nvarchar(64) Same as above, fourth field.

 Telescope Database Internals Guide

 Page 70 of 162 2/12/19

Field Data Type Description

fifth_field nvarchar(64) Same as above, fifth field.

sixth_field nvarchar(64) Same as above, sixth field.

seventh_field nvarchar(64) Same as above, seventh field.

eighth_field nvarchar(64) Same as above, eighth field.

rendition integer Default rendition (from DOC_RENDITIONS) that is displayed

in elements of this view.

QL_ASSETS

The QL_ASSETS table stores lists of assets to be sent via QuickLinks. The following chart describes the columns in

the QL_ASSETS table.

Field Data Type Description

ticket_id integer The ID for the Quick Link. See QL_TICKETS table.

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL

table for the asset being sent.

rend_id integer Cross reference to the rend_id field in the DOC_RENDITIONS
table.

conv_str nvarchar(max) The conversion string to be applied to this asset before
offering to the user for download.

QL_RECIPIENTS

The QL_RECIPIENTS table stores the email address of the recipients of the QuickLinks queued in the system. The

following chart describes the columns in the QL_RECIPIENTS table.

Field Data Type Description

ticket_id integer The ID for the QuickLinks. See QL_TICKETS table.

recipient nvarchar(255) The e-mail address of the QuickLink to be sent. Each row in
this table holds a single address.

access_key nvarchar(8) A randomly generated security key that will be sent to the

user in a separate email message. This key is required to
access the asset(s) for download.

 Telescope Database Internals Guide

 Page 71 of 162 2/12/19

QL_TICKETS

The QL_TICKETS table stores the lists of assets to be sent via QuickLinks. The following chart describes the

columns in the QL_TICKETS table.

Field Data Type Description

ticket_id integer The ID for the QuickLink.

sending_user nvarchar(32) The user_name of the creator of the referenced QuickLink.
Cross-reference to user_name in the USERS table.

sent_date datetime

(timestamp)

Date and time when the QuickLink was sent.

expiry_date datetime
(timestamp)

Date and time when this ticket is invalid (i.e., not available
for download).

expire_after integer Number of hours after the send_date to invalidate this ticket.

dl_remaining integer Number of downloads remaining before this ticket is invalid.

TEXTVIEW_FIELDS

The TEXTVIEW_FIELDS table stores user preferences about which fields users want to see on each line of text in

the text view. The following chart describes the columns in the TEXTVIEW_FIELDS table.

Field Data Type Description

user_name nvarchar(32) User name of the user for whom this preference applies. This

value refers back to the user_name field in the USERS table.

first_field nvarchar(64) The name of the first field from the metadata model to show
in the text view. This is the column_name field in the

EXTRA_COLUMNS table.

second_field nvarchar(64) Same as above, second field.

third_field nvarchar(64) Same as above, third field.

fourth_field nvarchar(64) Same as above, fourth field.

fifth_field nvarchar(64) Same as above, fifth field.

sixth_field nvarchar(64) Same as above, sixth field.

seventh_field nvarchar(64) Same as above, seventh field.

 Telescope Database Internals Guide

 Page 72 of 162 2/12/19

Field Data Type Description

eighth_field nvarchar(64) Same as above, eighth field.

rendition integer Default rendition (from DOC_RENDITIONS) that is displayed

in elements of this view.

TNAILVIEW_FIELDS

The TNAILVIEW_FIELDS table stores user preferences about which fields they want to see under each thumbnail

in the thumbnail view. The following chart describes the columns in the TNAILVIEW_FIELDS table.

Field Data Type Description

user_name nvarchar(32) The name of the user for whom this preference applies. This
value refers back to the user_name field in the USERS table.

first_field nvarchar(64) The name of the first field from the metadata model to show
in the thumbnail view. This is the column_name field in the
EXTRA_COLUMNS table.

second_field nvarchar(64) Same as above, second field.

third_field nvarchar(64) Same as above, third field.

fourth_field nvarchar(64) Same as above, fourth field.

fifth_field nvarchar(64) Same as above, fifth field.

sixth_field nvarchar(64) Same as above, sixth field.

rendition integer Default rendition (from DOC_RENDITIONS) that is displayed
in elements of this view.

UPLOAD_QUEUE (Deprecated)

Deprecated.

USERS

Telescope is access-controlled software. Users must log in to the database, and their activities are controlled by

access privileges. The USERS table details the access privileges for each user, as well as personal information,

such as name and contact information.

 Telescope Database Internals Guide

 Page 73 of 162 2/12/19

The USERS table is very useful for creating customizations that require external communications such as email.

For example, you could create a customization to monitor assets in a Telescope environment and alert a group

or division leader by email any time an asset is assigned to the group.

The following chart describes the columns in the USERS table.

Field Data Type Description

userid integer DEPRECATED.

user_name nvarchar(32) The login name of the user. This is the unique key for

this table.

password nvarchar(32) The password for the user. This field is encrypted in the
database to prevent unauthorized access.

access_where nvarchar(2000) For Tree Searches, the portion of an SQL where clause
to be appended to each query Telescope generates. This
can be used to restrict access to particular records in
the database. For example, if the access_where field for
a user contains “category = ‘SPT’ or category = ‘WLD’”,

and the user causes Telescope to generate a query like:
“Select ... from editorial where country = ‘Canada’”, the
final query submitted to the database engine would be:
“Select ... from editorial where country = ‘Canada’ and
category = ‘SPT’ or category = ‘WLD’”.

Note: This field is for the traditional SQL search method,
which is not recommended. For Solr search, refer to the

access_where_solr field.

access_flags nchar(20) Interpreted by Telescope as a sequence of individual
characters, where each character represents access

permission for functionality. A “Y” in a particular position
indicates that the position is “set” or that the user has
the given privilege. The character positions in the field
are defined as follows:

1 If set, the user is an administrator and can use
Telescope Administrator to set administrative
options for the database.

2 DEPRECATED.

3 If set, the user can download documents from the
database.

4 If set, the user can view files using the scrolling
Thumbnail View. If clear, the user can only use the
Text View for viewing files. This field is useful for
remote access users with limited bandwidth.

5 If set, the user can import files into the database
using Telescope.

6 If set, the user can see the extended view of the

documents in the database.

 Telescope Database Internals Guide

 Page 74 of 162 2/12/19

Field Data Type Description

7 If set, the user can delete files from the database.

8 If both this position and position 7 are set, the user
must obtain an approval before deleting file(s) from
the database.

9 If both this position and position 3 are set, the user

must obtain an approval before downloading file(s)
from the database.

10 If set, the user may issue approvals for deletions.

11 If set, the user may issue approvals for downloads.

12 If set, the user may change his or her own
password. If this field is not set, then the user must
ask the database administrator to change the

password.

13 If set, the user may use the “Change Multiple”
command in Telescope.

14 DEPRECATED.

15 If set, the user may use the “Move Files” command
in Telescope.

16 If set, the user may add and remove jobs
(templates) from the Jobs table.

17 DEPRECATED.

18 If set, the user may create public collections
(catalogs). If not set, the user may only create
private collections.

max_results integer A value that limits the number of hits a user can
successfully have on the results of an SQL query. If this
number is exceeded, Telescope issues a warning alert
and the user is either restricted to viewing the first

max_results records retrieved or placed back into the
find dialog.

Note: This field is not as relevant for 9.2 or later
because of new paging and Solr search architecture.
However, it is still useful to prevent timeouts when
using Integration Broker SOAP API queries.

grpcrt nchar(1) DEPRECATED.

grpchg nchar(1) DEPRECATED.

grpdel nchar(1) DEPRECATED.

chkout nchar(1) Y/N flag (with NULL equating to N) that indicates
whether a user is permitted to checkout files from the
database.

 Telescope Database Internals Guide

 Page 75 of 162 2/12/19

Field Data Type Description

seevers nchar(1) Y/N flag (with NULL equating to N) that indicates
whether a user is permitted to see previous versions of
files in the database or is limited to only viewing current
versions.

group_yn nchar(1) The Users table keeps records of users and groups in
Telescope. This field is a Y/N flag that indicates if the
entry is a Group or a User. “Y” in this field indicates that
this entry is a Group name, and any other value
(including NULL) indicates that this entry is a User.

member_of nvarchar(32) Name of the group to which the user belongs. For Group
users, this field will be NULL. This is cross-reference to
the user_name field of the Group user in the USERS

table.

phonenumber nvarchar(40) Optional descriptive information about the user.

email nvarchar(60) Optional descriptive information about the user.

fname nvarchar(40) Optional descriptive information about the user. This is
the user’s First Name.

lname nvarchar(40) Optional descriptive information about the user. This is
the user’s Last Name.

company nvarchar(40) Optional descriptive information about the user.

department nvarchar(80) Optional descriptive information about the user.

address nvarchar(80) Optional descriptive information about the user.

city nvarchar(40) Optional descriptive information about the user.

state nvarchar(2) Optional descriptive information about the user.

zipcode nvarchar(9) Optional descriptive information about the user.

country nvarchar(40) Optional descriptive information about the user.

impapprov nchar(1) Y/N flag for “Import With Approval”. If set to “Y”, the
user has this privilege. If it is anything else (including
NULL), the user does not have this privilege.

approvimp nchar(1) Y/N flag for “Approve Imports”. If set to “Y”, the user
has this privilege. If it is anything else (including NULL),
the user does not have this privilege.

appmsgto nvarchar(32) Name of the user to whom approvals messages are to
be sent, if any. If this field is an empty string or NULL,
the user is allowed to choose to whom approval
messages go.

 Telescope Database Internals Guide

 Page 76 of 162 2/12/19

Field Data Type Description

lastlogin timestamp Date and time the user last logged into the Telescope
system. Before the user logs in the first time, this value
is NULL.

defaultview short integer User’s default view preference, used by Telescope. This
field could be “1” for Thumbnail View, “2” for Text View
or “3” for Paragraph View.

usrclass nchar(2) User’s designation in the two-tiered user model:

CU – Content Editors (Concurrent Users).

CC – Content Consumers (Unlimited Browse and
Download by Web Users).

remarks nvarchar(max) Optional descriptive information about the user.

fulfiller_id integer If the user is a fulfiller, the ID in the oe_fulfillers table of

the fulfiller record will be entered for this user. Multiple
users can be linked to the same oe_fulfillers record. If
the user is not a fulfiller, this column will contain NULL.

dl_limit big integer The maximum size, in bytes, the user is able to
download in one click. If this value is zero, it means that
the user can download as much as they want. The
maximum value for the download limit is 2Gb.

freeconv_yn nchar(1) A permission flag indicating whether the user can use

the “standard” conversion functionality on the web. If
this field is set to ‘N’ or NULL, the user can only use the
named conversions provided for their group. If this field
is set to ‘Y’, the user may use any named conversions,
in addition to the standard “free-form” conversion

functionality provided by the File Conversion Broker.

order_yn nchar(1) A permission flag indicating whether the user can use
the order processing functions.

pool_name nvarchar(32) The name of the Session Broker license pool (if any) to
which the user belongs.

nofmimp_yn nchar(1) This setting determines whether file migration policies
apply during an import. If set to Yes, file migration

policies apply. If set to No, file migration policies do not
apply.

syncdocs_yn nchar(1) This field is used to indicate whether the user may use
the “Synchronize Documents” command. If set to ‘Y’,
the command is available to the user. If set to ‘N’, the
command is not available to the user.

 Telescope Database Internals Guide

 Page 77 of 162 2/12/19

Field Data Type Description

lctdocfiles_yn nchar(1) This field is used to indicate whether the user may use
the “Locate Document Files” command. If set to ‘Y’, the
command is available to the user. If set to ‘N’, the
command is not available to the user.

dupfiledetection integer This field is used to determine how collision detection is
handled, according to the following values:

1 File Name

2 File Name and Created Date

3 File Path

4 MD5 (that is, checksum)

dupfileresolution integer This field is used to determine how duplicate files are
handled, according to the following values:

1 Update Existing

2 Insert New

3 Skip File

ovrfiles_yn nchar(1) Y/N flag that indicates if the user has permission to
overwrite files. If the value is “Y”, the user is granted
permission to overwrite files. If the value is “N”, the
user is not granted permission to overwrite files. “N” is
the default setting. If overfiles_yn is NULL, the user is
granted permission to overwrite files.

tpp_promoteadmin_yn nchar(1) If set to ‘Y’, the user has access to the TPP (Telescope
Publishing Platform) Promote application.

tpp_distributeadmin_yn nchar(1) If set to ‘Y’, the user has access to the TPP Distribute
application.

findall_yn nchar(1) If set to ‘Y’, the user can see the Find ALL
icon/command at the top panel.

checkin_rem_yn nchar (1) If set to “Y”, the users can opt to remove files from their
local drives as they check them in.

hidefmimp_yn nchar (1) If set to “Y”, the user will not see Migration Policies
selection drop down box on the Import page (it will be
hidden). If the value is “N”, users will be able to see the

drop down box.

lang_id nchar(10) Identifies the language (from the language_local table,
lang_id column) of the user or group. For example,

en_US.

translator_yn nchar (1) This field is intended for future use.

 Telescope Database Internals Guide

 Page 78 of 162 2/12/19

Field Data Type Description

access_where_solr nvarchar(2000) The Solr where clause to be appended to each query
Telescope generates. This can be used to restrict access
for the user to particular records in the database.

The Solr where clause is generated in the TSAdmin
Users/Groups tab.

It is recommended that you create this content through
the TSAdmin interface. If you do attempt to update it,
ensure that you use uppercase for operators (AND, OR).

uploader_yn nchar(1) If set to “Y”, users can download and use the Telescope

Uploader. If the value is set to “N”, users are not
allowed to download the Telescope Uploader.

hidequicklinks_yn nchar(1) If set to “Y”, users can use QuickLinks. If set to “N”,

they cannot.

plugindownload_yn nchar(1) This setting is obsolete with the new Uploader
introduced in Telescope 9.4.0.x.

If set to “Y”, users can use the advanced download
plug-in (recommended). When this permission is not
checked, users will not be able to use the enhanced
download features available with this plug-in, and will
not see the “Improve your download experience” link in
the Download Cart.

candeleteadvsearch_yn nchar(1) If set to “Y”, users can delete advanced searches
they’ve made available to the public.

cansaveadvsearch_yn nchar(1) If set to “Y”, users can create and save public advanced
searches Without this permission, users can only create
private advanced searches.

date_created datetime
(timestamp)

Provides the date for when the user was added to the
table.

assetdock_yn nchar(1) If set to “Y”, users can use the “Drag and Drop” (Asset
Dock) feature.

login_fail_cnt integer The count of failed login attempts. Initial default value is

0, incremented by 1 after each failed login attempt.

This value is reset to 0 in any of the following situations:

 The TSWeb user successfully logs in with the correct
password

 The administrator unlocks the user in TSAdmin
(Users/Groups)

 The administrator resets the password

 Telescope Database Internals Guide

 Page 79 of 162 2/12/19

VIEW_ACTIONS

The VIEW_ACTIONS table stores the list of message actions available to each user. The following chart describes

the columns in the VIEW_ACTIONS table.

Field Data Type Description

user_name nvarchar(32) User name. Cross-reference to USERS.user_name.

action_code nvarchar(64) The name of the message action available to this user.
Cross-reference to the M_MSGACTIONS table.

VIEW_CATALOGS

The VIEW_CATALOGS table stores the list of collection (catalog) permissions available to each user. The following

chart describes the columns in the VIEW_CATALOGS table.

Field Data Type Description

user_name nvarchar(32) The username. Cross-reference to USERS.user_name.

lb_id integer ID of the collections in which this item belongs. Cross-

reference to the ID column in the M_LIGHTBOXES table.

edit_yn nchar(1) If this value is “Y” this user has the right to edit the
referenced collection. Any other value, including NULL,

prohibits this action.

nest_yn nchar(1) If this value is “Y” this user has the right to create collections
beneath this one (sub-collections). Any other value, including

NULL, prohibits this action.

VIEW_CONV

The VIEW_CONV table defines which groups of users can see which named conversions in the Telescope system.

The table acts as a join table between the USERS table and the NAMED_CONV table. The presence of a record in

this table indicates that the given group can see the given named conversion. The following chart describes the

columns in the VIEW_CONV table.

Field Data Type Description

group_name nchar(32) The name of the user group for which the visibility applies.

In Telescope 9.1 group_name is updated to nvarchar(32)

 Telescope Database Internals Guide

 Page 80 of 162 2/12/19

id integer The ID of the named conversion for which this visibility record
applies.

VIEW_FIELDS

The VIEW_FIELDS table defines which groups of users can see and/or edit which fields in the EXTRA_COLUMNS

table. The table acts as a join table between the USERS table and the EXTRA_COLUMNS table. The presence of a

record in VIEW_FIELDS indicates that the user group can see the field. Other columns in this table determine

whether the user group can edit the field, and whether the name of the field should be displayed differently for

this particular group. The following chart describes the columns in the VIEW_FIELDS table.

Field Data Type Description

user_name nvarchar(32) Cross-reference to the user_name field in the USERS table, of
the Group this refers to.

view_order integer Integer that represents the ordering of the field for this group
or user’s view.

edit_yn nchar(1) “Y” in this field indicates that the user or group can edit this
field. Any other value means they cannot.

column_idx short integer Cross-reference to the ID field in the EXTRA_COLUMNS table.

nm_override nchar(32) If not empty, the value in this field is the name that will be
used to display the field for the group. If it is empty, the field
will use the default display name, as defined in

EXTRA_COLUMNS.

VIEW_FM

The VIEW_FM table defines which groups of users can see which file migration policies in the Telescope system.

The table acts as a join table between the USERS table and the FM_POLICIES table. The presence of a record in

this table indicates that the given group can see the given file migration policy. The following chart describes the

columns in the VIEW_FM table.

Field Data Type Description

group_name nvarchar(32) The name of a user group that can be assigned to a file
migration policy.

fm_name nchar(64) The name of the file migration policy.

 Telescope Database Internals Guide

 Page 81 of 162 2/12/19

VIEW_FORMS

The VIEW_FORMS table defines which groups of users can see which form searches in the Telescope system. The

table works as a join table between the USERS table and the FORM_SEARCH table. The presence of a record in

this table indicates that the given group can see the given form search. The following chart describes the

columns in the VIEW_FORMS table.

Field Data Type Description

user_name nvarchar(32) Cross-reference to the user_name field in the USERS table, of

the Group this refers to.

search_id integer Cross-reference to search_id field in the FORM_SEARCH table.

VIEW_GROUPS

The VIEW_GROUPS table defines what other groups a given group can see, in the event that their visibility

should be limited. The interpretation of the records in this table is subtly different from the other “VIEW_…”

tables, in that the absence of any records for a particular group in this table indicates that the group has

unlimited visibility (i.e., that members of the group can see all other groups). There may be several

VIEW_GROUPS entries for each user group whose visibility is being limited. The entries in this table describe all

the groups that a given group can see, including itself. For example, if a given group of users should only be

able to see their own group, the VIEW_GROUPS table would contain a single entry for this group, where the

GROUP_NAME and VISIBLE_GROUP fields are equal.

The following chart describes the columns in the VIEW_GROUPS table.

Field Data Type Description

group_name nvarchar(32) Cross-reference to the user_name field in the USERS table, of
the Group this refers to.

visible_group nvarchar(32) User group that group_name can see. This is also a cross-
reference to the user_name field in the USERS table.

id integer Unique ID generated by the system for each record in the
table.

VIEW_HIER

The VIEW_HIER table defines which groups of users can see which hierarchical (tree) searches in the system. The

table works similarly to the VIEW_FIELDS table, acting as a join table between the USERS table and the

 Telescope Database Internals Guide

 Page 82 of 162 2/12/19

HIERARCHIES table. The presence of a record in this table indicates that the given group can see the given

hierarchy. The following chart describes the columns in the VIEW_HIER table.

Field Data Type Description

user_name nvarchar(32) Cross-reference to the user_name field in the USERS table, of
the Group this refers to.

hier_id integer Cross-reference to the hier_id field in the HIERARCHIES table.

VIEW_METHODS

The VIEW_METHODS table stores the list of download methods available to each user. The following chart

describes the columns in the VIEW_METHODS table.

Field Data Type Description

user_name nvarchar(32) The username. Cross-reference to USERS.user_name.

method_id integer The name of the download method available to this user.
Cross-reference DL_METHODS table.

VIEW_REND

The VIEW_REND table is used to govern which user groups can see which renditions. Like the other tables of its

type, this table is a simple joining table between the RENDITIONS and the USERS tables. The presence of a

record in VIEW_REND indicates that the given group can see the given rendition. The following chart describes

the columns in the VIEW_REND table.

Field Data Type Description

user_name nvarchar(32) Cross-reference to the user_name field in the USERS table.
This user name is the name of a Group user.

rendition integer Cross-reference to the rend_id field in the RENDITIONS table.

 Telescope Database Internals Guide

 Page 83 of 162 2/12/19

VIEW_RM

(For Orchestration) The VIEW_RM table defines which groups can see which route maps in Telescope. The table

acts as a join table between the USERS table and the WS_ROUTEMAPS table. The following chart describes the

columns in the VIEW_RM table.

Field Data Type Description

user_name nvarchar(32) User group. Cross-reference to USERS.user_name.

rm_id integer The route map ID. Cross-reference to the ID column of the

WS_ROUTEMAPS table.

VIEW_SOURCES

The VIEW_SOURCES table contains the view privileges that link user groups to sources in the Lookup Broker. A

user group must have an entry in this table for a specific lookup field in order to be able to access the Lookup

Broker functionality. Users in groups without an entry for a specific field will see a grayed out Lookup Broker

icon that does not function beside the lookup field in question. For more information on defining lookups, see

the Telescope Administrator’s Reference Manual.

The following chart describes the columns in the VIEW_SOURCES table.

Field Data Type Description

vs_id integer A unique key for this table. This is an administrative ID,

generated by the Telescope Admin application.

column_id integer The ID of the column for which the source applies, which is a
cross reference to the ID column in the EXTRA_COLUMNS
table.

group_name nvarchar(32) The user group for which this privilege applies.

source_name nvarchar(32) The name of the source obtained from the Lookup Broker,
which the user group has permission to see.

VIEW_TRACKS

The VIEW_TRACKS table stores the list of text tracks available to each user group. The following chart describes

the columns in the VIEW_TRACKS table.

Field Data Type Description

 Telescope Database Internals Guide

 Page 84 of 162 2/12/19

group_name nvarchar(32) The user group. Cross-reference to USERS.user_name.

track_id big integer ID of the text track. Cross-reference to the track_id column in
the VL_TRACKS table.

edit_yn nchar(1) If this value is “Y” this user has edit permission for the track.
Default is “N”.

VIEW_VIDEOMGR

The VIEW_VIDEOMGR table stores the list of rights available to each user group for different functions of the

Video Manager interface. Valid ENTITY entries are KEY FRAMES, CLIPS and PROXIES. An entry in this table

signifies the user group has at least VIEW privileges to the functionality referenced in the ENTITY column. The

following chart describes the columns in the VIEW_VIDEOMGR table.

Field Data Type Description

group_name nvarchar(32) The user group name. Cross-reference to USERS.user_name

entity nchar(10) This field determines how to view the attached collection
(catalog). Possible values are:

keyframes – sets the permission for the keyframes section.

Clips – sets the permission for the clips section.

Proxies – sets the permission for the proxies section

edit_yn nchar(1) If this value is “Y” this group has edit permissions for the
functionality referenced by the value in the entity column.
Any other value, including NULL, prohibits editing.

VIEW_VL_ANNOTATIONSETS

The VIEW_VL_ANNOTATIONSETS table stores the list of rights available to each user group for annotation sets.

The following chart describes the columns in the VIEW_VL_ANNOTATIONSETS table.

Field Data Type Description

group_name nvarchar(32) User group. Cross-reference to USERS.user_name.

set_id integer The set ID. Cross-reference to the set_id column of the
VL_ANNOTATIONSETS table.

edit_yn nchar(1) If this value is “Y” this group has edit permissions for the
annotation set referenced by the value in the set_id column.
Any other value, including NULL, prohibits editing. Default is
“N”.

 Telescope Database Internals Guide

 Page 85 of 162 2/12/19

VIEW_WELCOMEPAGES

The VIEW_WELCOMEPAGES table stores the list of Welcome Pages available to each user group. The following

chart describes the columns in the VIEW_WELCOMEPAGES table.

Field Data Type Description

group_name nvarchar(32) Group name. Cross-reference to USERS.user_name.

page_id integer ID of the Welcome Page. Cross reference to the the page_id
column of the WELCOME_PAGES table.

 Telescope Database Internals Guide

 Page 86 of 162 2/12/19

Collection Tables

Telescope collections (catalogs) are ad-hoc collections of assets that allow users to organize their work

environment to suit their needs. Collections can be private or public (meaning they are visible to other users or

groups).

Note: Collections were previously called “catalogs” in earlier releases of Telescope.

M_LB_ITEMS

The M_LB_ITEMS table contains the actual record (asset) contents of the collections. The following chart

describes the columns in the M_LB_ITEMS table.

Field Data Type Description

lb_id integer ID of the collection in which this item belongs. Cross-
reference to the ID column in the M_LIGHTBOXES table.

lb_order integer Position of the item in the collection (numbered from 1 .. n,

where n is the number of items in the collection).

record_id integer The asset’s record_id in the EDITORIAL table.

M_LIGHTBOXES

This table contains Telescope’s Collections. A collection (formerly called “catalog”) is made up of a collection of

assets that are saved in the database. The M_LIGHTBOXES table together with the M_LB_ITEMS table defines a

Telescope collection.

Some interesting customizations can be made with the M_LIGHTBOXES table. For example, it is possible to have

events trigger the creation of a new collection. Imagine that there is an automated news feed linked into the

Telescope environment. A scheduled job could be created (cron job or DBMS_JOB in Oracle) that runs early

every morning (1 a.m.). This job would create a new public collection containing all the assets that were obtained

through the news feed the day before.

The following chart describes the columns in the M_LIGHTBOXES table.

Field Data Type Description

id integer An identifier to uniquely identify the collection, generated by
Telescope.

lb_name nvarchar(256) Collection name assigned by the user.

 Telescope Database Internals Guide

 Page 87 of 162 2/12/19

Field Data Type Description

owner nvarchar(32) The user who created the collection. This value will always be
filled in, even if the collection is a public collection.

(If the user is deleted from the USERS table, this value will
remain.)

userid integer DEPRECATED.

public_yn nchar(1) One-character flag that contains the value “Y” if the collection
is a public collection and available to other users, or “N” if the
collection is private and only available to the owner.

password nvarchar(20) The password for the collection. An empty password (or
NULL) means the collection is not password protected.

group_id integer DEPRECATED.

create_date datetime
(timestamp)

Date the collection was created.

Note: The original system create and modify dates may not
always be preserved when a file is imported, because of

differences in data handling between different operating
systems.

mod_date datetime
(timestamp)

Date the collection was last modified.

Note: The original system create and modify dates may not

always be preserved when a file is imported, because of

differences in data handling between different operating
systems.

parent_id integer The ID of the collection which contains this collection entry
(the parent). A non-zero value here indicates this collection is
‘nested’.

type nchar(1) Specifies whether or not the collection is a smart collection. If
set to ‘S’, the collection is a smart collection. A NULL values
means the collection is not a smart ca collection talog.

lb_xml nvarchar(max) If the collection is a smart collection, this value (represented

in XML format) will have the command used to generate the
search used to generate the collection contents.

solr_search nvarchar(max) If the collection is a smart collection and the Solr search

method is implemented, this value contains the Solr query to
generate the collection contents.

search_criteria nvarchar(max)

(NCLOB for
Oracle)

Stores smart collection criteria.

 Telescope Database Internals Guide

 Page 88 of 162 2/12/19

Welcome Pages Tables

WELCOME_ICONIC_LEVELS

The WELCOME_ICONIC_LEVELS table contains information about each level of the Welcome Page iconic searches.

The following chart describes the columns in the WELCOME_ICONIC_LEVELS table.

Field Data Type Description

search_id integer A reference to the search_id column in the
WELCOME_ICONIC_SEARCHES table, of the iconic search to
which this level belongs.

level_no integer An integer from 1 .. n, indicating the ‘depth’ of the level in the
iconic search. This value will match the value of the level_id
column in the HIER_LEVELS table for the level being defined.

display_type nchar(4) The desired display type for the level, which governs how
elements are displayed to the user. There are 3 possible
values for this field:

icon – Show the graphical icon only for elements on this
level.

Text – Show the textual value of the elements for this level,

without the graphical icon (this is still different than a

traditional textual tree search, however, as the text items are
displayed in a tabular format, rather than as a list with
‘reveal’ controls).

Both – Show both the graphical icon and the text.

In the absence of a valid value in this field, the default is
‘both’.

level_title nvarchar(255) An optional display title for the level. If this column is empty
or NULL, it will be used in the iconic search display as the title
for the level when the user navigates to it during the search.

default_icon binary An optional default icon for the level. If not NULL, this column
will contain a PNG image (of any size) that will be used as the
icon for any elements in the level that do not have an explicit
icon listed in the WELCOME_ICONS table. The PNG format is

used in order to permit transparency for the icons.

default_icon_
description

nvarchar(4000) An optional default icon description for the level. If not NULL,
this value will be used as the descriptive text for any icon

values selected on this level that do not explicitly specify their
own descriptive text in the WELCOME_ICONS table.

 Telescope Database Internals Guide

 Page 89 of 162 2/12/19

default_action nvarchar(10) An optional default action to take when the user clicks on an
icon element in this level. If this column is empty or NULL,
the default action is assumed to be ‘Reveal’ if the level is not

the last level in the tree. Otherwise, the default value is
‘Search’.

If not NULL, there are 4 valid values for this field:

Reveal – When the user clicks on an icon element, reveal the
next level of the search.

Search – Execute the search indicated by the selected

element.

Details – Execute the search indicated by the selected

element, and display the document info details page for
the first asset found.

Preview – Execute the search indicated by the selected
element, and display the preview page for the first asset
found.

WELCOME_ICONIC_SEARCHES

The WELCOME_ICONIC_SEARCHES table lists the iconic search information that can be used for display on a

welcome page. Telescope administrator can define as many welcome page iconic searches as they like, and can

reference them in the welcome page HTML file, using the drop-in ‘iconic search’ component. The following chart

describes the columns in the WELCOME_ICONIC_SEARCHES table.

Field Data Type Description

search_id integer The unique key for this table – an integer value that identifies
this iconic search. Telescope Admin creates this identifier
when a new iconic search is created. In the ‘iconic search’
drop-in component on the welcome page HTML, this ID can
be referenced using the search_id attribute in the WOD file,
to link to this specific search.

search_name nvarchar(64) The displayed name for this search. This is the name shown
to the administrator in Telescope Admin for the search, and
additionally, in the ‘iconic search’ drop-in component on the
welcome page HTML. This name can be referenced using the

search_name attribute in the WOD file, to link to this specific
search. Because of this requirement, this field will have a
unique index defined on it in the database, and Telescope
Admin will ensure that two iconic searches with the same
name cannot be created.

div_width integer The width (in pixels) of the area to be reserved for the
search. This will result in a DIV tag of the given width being
inserted into the HTML.

 Telescope Database Internals Guide

 Page 90 of 162 2/12/19

div_height integer The height (in pixels) of the area to be reserved for the
search. This will result in a DIV tag of the given height being
inserted into the HTML.

icon_columns integer The number of columns that will be shown in the table of
icons presented for each level in the search.

icon_rows integer The number of rows of icons to display per batch in the
search. If the level display for any level of this search shows
more icons than can be displayed in this number of rows, a
batch navigator will be used to move through the level result
in batches.

use_tree integer A reference to the hier_id column in the HIERARCHIES table,
of the tree search which should be used as the basis for this
iconic tree. The ‘iconic search’ drop-in component will

communicate with the Tree Broker, requesting the tree
specified by this value, to obtain the data to populate the
various levels of the iconic search.

WELCOME_ICONS

The WELCOME_ICONS table contains all of the icons to display for a welcome page iconic search. The following

chart describes the columns in the WELCOME_ICONICS table.

Field Data Type Description

search_id integer A reference to the search_id column in the
WELCOME_ICONIC_SEARCHES table, of the iconic search to
which icon belongs.

level_no integer An integer from 1 .. n, indicating the ‘depth’ of the level in the
iconic search. This value will match the value of the level_id
column in the HIER_LEVELS table for the level being defined.

valuestr nvarchar(255) The icon element’s value, which will be matched against the

values returned by the Tree Broker for the level. Since this
matching is done case insensitively, the capitalization of this
value is unimportant.

icon_image binary The icon image. This is stored in PNG format (to allow for
transparency), of any size.

icon_description nvarchar(4000) An optional description for the icon element. If not NULL, this

value will be used as the descriptive text for the element,
when the user selects it in the search.

 Telescope Database Internals Guide

 Page 91 of 162 2/12/19

action_type nvarchar(10) The desired action to take when the user clicks on this
element. If this column is empty, NULL, or is not one of the
listed values, it is assumed to contain ‘default’. There are 6

possible values for this field:

Default – Perform the default action for the level, as defined
by the default_action column in
WELCOME_ICONIC_LEVELS.

Reveal – Reveal the next level of the search.

Search – Execute the search indicated by the element.

Catalog – Display a collection (catalog) (see the action_id
column for information).

Details – Display a document info details page (see the
action_id column for information).

Preview – Display a preview page (see the action_id column
for information).

action_id integer An identifier that defines, in conjunction with the action_type
column above, what should happen when the user clicks on
the element.

For an action_type of ‘catalog’, this value is the ID of a
collection (catalog) that should be displayed to the user. If

action_id references a collection that doesn’t exist, or that the
logged-in user cannot see, an error is displayed to the user.

For an action_type of ‘details’ or ‘preview’, this value is the
record_id for the asset whose information should be shown. If

this value references an asset that doesn’t exist, or that the
logged-in user cannot see, an error is displayed to the user.

However, if this value is NULL, then the element’s search is
executed, and the appropriate page is shown for the first
asset found.

WELCOME_PAGES

The WELCOME_PAGES table stores the list of Welcome Pages available in the system. The following chart

describes the columns in the WELCOME_PAGES table.

Field Data Type Description

page_id integer The ID for the Welcome Page.

page_name nvarchar(64) The convenience name of the Welcome Page.

html_file nvarchar(255) The file name of the Welcome Page. It must reside in the
…\tsweb.woa\Contents\Resources\WelcomePages folder.

lang_id nchar (10) Identifies the language (from the language_local table,
lang_id column). For example, en_US.

 Telescope Database Internals Guide

 Page 92 of 162 2/12/19

Messaging Tables

Telescope’s messaging system works by storing ‘messages’ in the database, and having each logged-in user

periodically poll the database to see if they have new messages. Attaching an asset to a message is simply done

by passing a reference to the attached asset’s RECORD_ID value, rather than sending the potentially large asset

through the network; as would happen with standard SMTP messaging.

M_ACTIONS

The M_ACTIONS table stores the list of message actions available on the system, along with the code that is

actually executed when that message action is selected. The following chart describes the columns in the

M_ACTIONS table.

Field Data Type Description

action_code nvarchar(64) The name used to refer to the action within Telescope.

display_name nvarchar(255) The displayed name of the action. This will become the
button label within a message.

action_script nvarchar(4000) The SQL script to be executed at runtime when the user
clicks on the Action button within a message. Replacement

parameters available to be passed in the script are:

 MSG_ID – Message ID from the M_MESSAGES table

 UN – user_name of the user from the USERS table

 UG – user_name (group name) of the user from the
USERS table

system_action nchar(1) If the value is “Y” the action is one of the system supplied
actions. In that case, any action script in this record will be

ignored and replaces by the built-in functions.

service_action nchar(1) Indicates if the action is for Orchestration Services:

N Regular message action (Default value).

Y Service action.

decision_id integer The decision ID from the WS_SERVICEDECISIONS table.

comment_label nvarchar(255) The comment label to display requesting input when the
user takes an action. A “NULL” value means user input is
not required.

service_id integer This is used for Orchestration. If the message is tied to an
Orchestration service, the service_id identifies what running
workflow the message is tied to.

 Telescope Database Internals Guide

 Page 93 of 162 2/12/19

Field Data Type Description

require_assets_YN nchar(1) This is used for Orchestration. The option in the route map
(within Telescope Admin) for “Require Assets” is captured in
the current service within require_assets_YN. This means
that the user is not supposed to be allowed to proceed with
the flow without picking one or more assets to continue

with. Default is “N”.

M_ATTACHMENTS

The M_ATTACHMENTS table stores the relationship between messages and their attached documents. For each

document attached to a particular message, there will be an M_ATTACHMENTS record, which links the document

and the message. The following chart describes the columns in the M_ATTACHMENTS table.

Field Data Type Description

msg_id integer Cross-reference to the ID column of the M_MESSAGES table.

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL

table.

M_MESSAGES

The M_MESSAGES table contains the information about each Telescope message in the system. Messages can be

sent from one user to another, and the contents and information about the messages are stored in six tables:

M_MESSAGES, M_MSGTEXT, M_ATTACHMENTS, M_RECIPIENTS, M_MSGACTIONS, and M_ACTIONS.

Note: Messages sent using the Telescope internal messaging system are not tied to email. The User

Preferences can be configured to send an SMTP email alerting the Telescope message recipient that a

message waiting.

Environments where some Telescope users may only make use of the system periodically may have a need to

alert those users when a message is waiting for them.

The following chart describes the columns in the M_MESSAGES table.

Field Data Type Description

id integer Unique identifier generated by the system for each message.

from_user nvarchar(32) User name of the user who sent the message.

 Telescope Database Internals Guide

 Page 94 of 162 2/12/19

Field Data Type Description

userid integer DEPRECATED.

to_user nvarchar(32) DEPRECATED.

to_userid integer DEPRECATED.

timesaved datetime

(timestamp)

Date and time the message was saved (sent).

read_flag nchar(1) DEPRECATED.

headline nvarchar(255) Short description or the subject line for the message.

template_id integer ID of template contained in the M_TEMPLATE table.

M_MSGACTIONS

The M_MSGACTIONS table stores the relationship between messages and any message actions available to the

user upon viewing the message (for example, approve or deny). The following chart describes the columns in the

M_MSGACTIONS table.

Field Data Type Description

msg_id integer Cross-reference to the M_MESSAGES table.

action_code nvarchar(64) Cross-reference to the M_ACTIONS table.

M_MSGTEXT

The M_MSGTEXT table contains the actual text of each message. To allow for unlimited-length messages, each

message in the M_MESSAGES table can have as many MSGTEXT entries as required to hold the entire message.

When retrieved in order, the MSGTEXT records contain the entire text of the message. The following chart

describes the columns in the M_MSGTEXT table.

Field Data Type Description

msg_id integer Cross-reference to the M_MESSAGES table.

 Telescope Database Internals Guide

 Page 95 of 162 2/12/19

Field Data Type Description

txt_id integer Ordering of the msgtext records in the message. For example,
a sufficiently long message might contain three msgtext
entries, all with the same msg_id field, and with txt_id fields
containing the values 1, 2, and 3, in order.

Retrieving the msgtext entries ordered by txt_id will retrieve

the message, in the correct sequence, in (approximately) 2k
chunks. When saving a message, the message should be
divided up into (approximately) 2k chunks, and saved in
order, setting txt_id appropriately for each chunk saved.

msgtext nvarchar(max) Actual text of the message.

lang_id nchar(10) Identifies the language (from the language_local table,
lang_id column). For example, en_US.

M_RECIPIENTS

The M_RECIPIENTS table stores the relationship between messages and their recipients. The following chart

describes the columns in the M_RECIPIENTS table.

Field Data Type Description

msg_id integer Cross-reference to the M_MESSAGES table.

recipient_id integer An ordinal reference to the message recipients and the unique
ID for this table.

user_name nvarchar(32) The user name of the recipient.

read_date datetime
(timestamp)

Once the user opens the message this date time stamp is set.

todo_flag nchar(1) A “Y” indicates the message has a Message Action attached.
See action_taken below.

A “D” indicates the message was deleted from the inbox by
the recipient.

action_taken nvarchar(64) The action code corresponding to the Action the user has
clicked in the message. Cross-reference to the M_ACTIONS
table.

due_date datetime
(timestamp)

The due date of the current message if the message is part of
the Orchestration Services.

 Telescope Database Internals Guide

 Page 96 of 162 2/12/19

M_TEMPLATE

The M_TEMPLATE table stores localizable templates for system-generated messages.

The following chart describes the columns in the M_TEMPLATE table.

Field Data Type Description

id integer Cross-reference to the M_MESSAGES table, template_ID
column.

template_name nchar(48) Name of the specific template being described. Each template

setting is a keyword/value pair, so the keyword column is
unique for a particular user or group.

template_text nvarchar(max) The preference setting itself. The contents of this column
depend on the keyword associated with it.

template_type nchar(4) The origin of the template. For example,

FFPL=FlipFactory Player (Deprecated)

IB= Ingest Broker MB=Message Broker.

TRPL=Transformation Platform

lang_id nchar(10) Identifies the language (from the language_local table,
lang_id column). For example, en_US.

The following are some examples of default template text used by Telescope (for lang_id=en_US):

template_ty

pe

template_name template_text

MB emailNotificationBody ‘<!MESSAGE_TEXT!>’ + CHAR(10) + CHAR(10) +
‘Follow the link below to log into Telescope and see
your messages:’ + CHAR(10) + ‘<!LOGIN_URL!>’

MB emailOriginalSenderFooter CHAR(10) + CHAR(10) + ‘The original sender of this
email is: <!ORIGINAL_SENDER!>, please reply to this
account.’ + CHAR(10)

FFPL flipSuccessSubject “Video asset completed processing”

FFPL flipErrorSubject “Video asset processed, WITH ERRORS”

FFPL flipSuccessBody “The attached video asset was processed without errors
by the Flip Factory server.”

 Telescope Database Internals Guide

 Page 97 of 162 2/12/19

Orchestration Services Tables

These tables support the Telescope Orchestration Services. For details on how to set up and use orchestration,

see the chapter in the Telescope Administrator’s Reference Guide.

WS_ARCHIVE

The WS_ARCHIVE table stores information about completed services. The following chart describes the columns

in the WS_ARCHIVE table.

Field Data Type Description

id integer A unique key for this table.

from_category nvarchar(64) The name of the route map category the service is based on
from the rm_name field from the WS_ROUTEMAPS table.

archive_date datetime
(timestamp)

The date and time the service was moved from the service
trace tables and added to the archive.

service_text nvarchar(max) XML formatted text that contains all of the information about

the service at the time it was moved to the archive.

WS_DECISIONS

The WS_DECISIONS table defines decisions for each junction. The following chart describes the columns in the

WS_DECISIONS table.

Field Data Type Description

id integer A unique identifier for the decision.

junction_id integer The ID of the junction this decision belongs to from the
WS_JUNCTIONS table.

name nvarchar(64) The name of the decision.

threshold integer The threshold percentage of users who must choose this

decision to activate it.

comment_label nvarchar(255) The comment label to display requesting input when the user
makes the decision. “NULL” means the user input is not
required.

side_effect nvarchar(max) The XML definition of the side effect of this decision, if any.

 Telescope Database Internals Guide

 Page 98 of 162 2/12/19

linked_to integer The ID of the junction this decision points to. “NULL” means
“End of Route”.

require_assets_YN nchar(1) This indicates if the user must select one or more assets
before clicking on one of the decision buttons for this junction
of the workflow. If set to Yes, the system will not allow the
flow to proceed if the user does NOT pick an asset and clicks

a decision button. Default is “N”.

WS_J_NOTIFICATIONS

The WS_J_NOTIFICATIONS table defines the junction users who should be notified if a service is delayed (or a

milestone is missed) at a given junction. The following chart describes the columns in the WS_J_ NOTIFICATIONS

table.

Field Data Type Description

junction_id integer The ID of the junction from the WS_JUNCTIONS table.

user_name nvarchar(32) The user who should be notified.

notification_type integer Defines the type of notification to send. Valid values are:

1 Notify the user if the service is delayed

2 Notify the user if a milestone is missed

WS_J_USERS

The WS_J_USERS table defines users who can move a service forward at a decision point. The following chart

describes the columns in the WS_J_USERS table.

Field Data Type Description

junction_id integer The ID of the junction from the WS_JUNCTIONS table.

user_name nvarchar(32) The user responsible for the decision.

required nchar(1) Indicates whether this user must provide a decision at this
junction. Valid values are:

Y A decision is required

N A decision is optional (Default value)

 Telescope Database Internals Guide

 Page 99 of 162 2/12/19

WS_JUNCTIONS

The WS_JUNCTIONS table defines the sequences of steps that assets will follow through a given routing. The

following chart describes the columns in the WS_JUNCTIONS table.

Field Data Type Description

id integer A unique identifier, generated automatically, for the
junction.

rm_id integer The route map ID to which this junction belongs.

name nvarchar(64) The name of the junction.

description nvarchar(4000) A description of the junction.

time_alocated integer The amount of time allocated to this junction.

time_unit integer An integer representing the unit of time. Valid values are:

1 Hours

2 Days

3 Weeks

4 Months

normal_compression nchar(1) Indicates is the timeline acceleration is set to normal or
compressed.

Y Compressed (Default value)

N Normal

milestone integer Indicates whether the junction may have a milestone date
associated with it.

1 Never

2 Optional

3 Always

delay_notifications nchar(1) Indicates whether the service owner should be notified if the
service is delayed at this junction. If “Y”, notify the owner;

default “N”.

missing_notification nchar(1) Indicates whether the service owner should be notified if the
milestone is missed at this junction. If “Y”, notify the owner;

default “N”.

WS_RM_NOTIFICATIONS

The WS_RM_NOTIFICATIONS table defines users who should be notified when a service based on this route map

fail to execute. The following chart describes the columns in the WS_RM_NOTIFICATIONS table.

 Telescope Database Internals Guide

 Page 100 of 162 2/12/19

Field Data Type Description

rm_id integer The route map ID from the WS_ROUTEMAPS table.

user_name nvarchar(32) The user to be notified.

notification_type integer The type of notification. Valid values for this field are:

1 Service Monitor

2 Notification user

WS_ROUTEMAPS

The WS_ROUTEMAPS table defines the sequences of steps that assets will follow through a given routing. The

following chart describes the columns in the WS_ROUTEMAPS table.

Field Data Type Description

id integer A unique identifier for the route map.

type nvarchar(64) The route map type.

name nvarchar(64) The name of the route map (the combination of rm_type and
rm_name must be unique).

description nvarchar(4000) A free-form description of the route map.

notifyowner nchar(1) Indicates whether the service owner should also be notified of
service execution failures. Valid values are “Y” and “N”; the
default value is “N”.

owner nvarchar(32) The user who created the route.

WS_S_NOTIFICATIONS

The WS_S_NOTIFICATIONS table defines the users who can monitor a running service. The following chart

describes the columns in the WS_S_NOTIFICATIONS table.

Field Data Type Description

service_id integer The ID of the service from the WS_SERVICES table.

user_name nvarchar(32) The user who can monitor the service.

notification_type integer Defines the type of notification to send. Valid values are:

1 Notify the user if the service is delayed

2 Notify the user if a milestone is missed

 Telescope Database Internals Guide

 Page 101 of 162 2/12/19

WS_SERVICEASSETS

The WS_SERVICEASSETS table stores the assets attached to the running service. The following chart describes the

columns in the WS_SERVICEASSETS table.

Field Data Type Description

service_id integer The IDof the service from the WS_SERVICES table.

record_id integer The record_id of the asset from EDITORIAL table.

WS_SERVICEDECISIONS

The WS_SERVICEDECISIONS table stores information about the decisions for a currently running service. The

following chart describes the columns in the WS_SERVICEDECISIONS table.

Field Data Type Description

id integer A unique identifier for the decision.

junction_id integer The ID of the junction this decision belongs to from the
WS_SERVICEJUNCTIONS table.

name nvarchar(64) The name of the decision.

threshold integer The threshold percentage of users who must choose this

decision to activate it.

comment_label nvarchar(255) The comment label to display requesting input when the user
makes the decision. “NULL” means the user input is not

required.

side_effect nvarchar(max) The XML definition of the side effect of this decision, if any.

linked_to integer The ID of the junction this decision points to. “NULL” means
“End of Route”.

require_assets_YN nchar(1) Similar to the WS_DECISIONS table.require_assets_YN. The
WS_DECISIONS table records the settings for the route map
configuration. When a service is kicked off, the settings are
copied from the WS_DECISIONS table into the
WS_SERVICEDECISIONS table for use for the running flow.

 Telescope Database Internals Guide

 Page 102 of 162 2/12/19

WS_SERVICEJUNCTIONS

The WS_SERVICEJUNCTIONS table stores information about the junctions for a given service. The entries are

entered when each service starts and removed when each service is completed (or stopped). The following chart

describes the columns in the WS_SERVICEJUNCTIONS table.

Field Data Type Description

id integer A unique identifier, generated automatically, for the
junction.

service_id integer The service ID to which this junction belongs.

name nvarchar(64) The name of the junction.

description nvarchar(4000) A description of the junction.

time_alocated integer The amount of time allocated to this junction.

time_unit integer An integer representing the unit of time. Valid values

are:

1 Hours

2 Days

3 Weeks

4 Months

normal_compression nchar(1) Indicates is the timeline acceleration is set to normal or
compressed.

Y Compressed (Default value)

N Normal

milestone integer Indicates whether the junction may have a milestone
date associated with it.

1 Never

2 Optional

3 Always

delay_notifications nchar(1) Indicates whether the service owner should be notified if
the service is delayed at this junction. If “Y”, notify the
owner; default “N”.

missing_notification nchar(1) Indicates whether the service owner should be notified if
the milestone is missed at this junction. If “Y”, notify the
owner; default “N”.

 Telescope Database Internals Guide

 Page 103 of 162 2/12/19

WS_SERVICES

The WS_SERVICES table stores the information for each service. The following chart describes the columns in the

WS_SERVICES table.

Field Data Type Description

id integer A unique identifier for the service.

type nvarchar(64) The route map type this service is based on.

name nvarchar(256) The name of the service.

description nvarchar(4000) The route map description from the WS_ROUTEMAPS table.

notifyowner nchar(1) The notification setting from the WS_ROUTEMAPS table.

msg_id integer The Telescope message identifier that represents the
service.

owner nvarchar(32) The user who initiated the service.

start_date datetime
(MSSQL) or date
(Oracle)

The date and time the service was initiated. This is the
service “baseline” date for all the subsequent calculations to
determine whether the service is running on schedule.

end_date datetime
(MSSQL) or date

(Oracle)

The date and time the service completed; the value is NULL
during the service’s run.

tz_offset integer The TimeZone offset from UTC, in milliseconds. For
example, New York standard time at -5 hours would be 5 x
60,000 = - 300,000 ms.

WS_SERVICETRACE

The WS_SERVICETRACE table stores trace information about the junctions for a running service. The following

chart describes the columns in the WS_SERVICETRACE table.

Field Data Type Description

id integer A unique identifier for the trace.

junction_id integer The ID of the junction this decision belongs to from the
WS_SERVICEJUNCTIONS table.

sequence_no integer The current junction’s location in the running service.

 Telescope Database Internals Guide

 Page 104 of 162 2/12/19

type integer The type of junction trace describes. Valid values are:

1 Baseline

2 Real time

state integer The state of the junction. Valid values are:

1 Passed

2 Current

3 Future

start_date datetime
(MSSQL) or

date (Oracle)

The time the junction was entered. For future junctions, the
value will be the scheduled start date.

end_date datetime
(MSSQL) or
date (Oracle)

The time the service left the junction. For current and future
junctions, the end_date will be the scheduled due date.

milestone datetime
(MSSQL) or
date (Oracle)

The milestone setting for this junction.

manual_advance nchar(1) Set to “Y” if the service owner or administrator manually
advanced the service, otherwise the value defaults to “N”.

decision_taken integer The decision ID from the WS_SERVICEDECISIONS table
representing the decision made at this junction. This field is
“NULL” for current and future junctions.

WS_SJ_NOTIFICATIONS

The WS_SJ_NOTIFICATIONS table defines the users who should be notified if the service is delayed (or a

milestone is missed) at a given junction. The following chart describes the columns in the WS_SJ_NOTIFICATIONS

table.

Field Data Type Description

junction_id integer The ID of the junction from the WS_SERVICEJUNCTIONS
table.

user_name nvarchar(32) The user who should be notified.

notification_type integer Defines the type of notification to send. Valid values are:

1 Notify the user if the service is delayed

2 Notify the user if a milestone is missed

 Telescope Database Internals Guide

 Page 105 of 162 2/12/19

WS_SJ_USERS

The WS_SJ_USERS table defines users who can move a running service forward at a given decision point. The

following chart describes the columns in the WS_SJ_USERS table.

Field Data Type Description

junction_id integer The ID of the junction from the WS_SERVICEJUNCTIONS
table.

user_name nvarchar(32) The user responsible for the decision.

required nchar(1) Indicates whether this user must provide a decision at this
junction. Valid values are:

Y A decision is required

N A decision is optional (Default value)

WS_ST_USERS

The WS_ST_USERS table stores the user decision information of past and current junctions. The following chart

describes the columns in the WS_ST_USERS table.

Field Data Type Description

trace_id integer The service trace ID from the WS_SERVICETRACE table.

recipient_id integer The ID of the decision user.

user_name nvarchar(32) The user_name from users table.

required nchar(1) Indicates whether a decision is required. Value values are:

1 Required

2 Optional

read_date datetime
(MSSQL) or
date (Oracle)

The date and time the user made the decision.

todo_flag nchar(1) A “Y” indicates the message has a message action attached.
Default is “N”.

action_taken nvarchar(64) The action_code from M_ACTIONS table.

comments nvarchar(256) The user’s input comments.

 Telescope Database Internals Guide

 Page 106 of 162 2/12/19

Search Tables

(For details on setting up searching, see the Telescope Administrator’s Reference Manual.)

Telescope offers several different types of searches:

KEYWORD (“SIMPLE”) SEARCH: is an easy-to-use search that permits word-based searching on several database

fields simultaneously.

ADVANCED SEARCH: is a ‘power’ search that permits the definition by the user of arbitrarily complex Boolean-

logic based searches.

TREE (or HIERARCHICAL) SEARCH: is a very intuitive, ‘drill-down’ search, where the administrator defines a

hierarchy of metadata fields that the user can explore in a tree-like display that makes browsing the contents of

the database very simple.

FORM SEARCH is a named search set up by the administrator to provide a quick method for users to find what

they are looking for.

CONTENT SEARCH: is a full-text search and retrieval tool that can query the text contents of many types of

documents (word processing documents, video closed-caption data, etc.) and provide relevance-ranked results to

the user.

The following tables are used to manage the various search capabilities of Telescope.

FORM_SEARCH

The FORM_SEARCH table stores information about the form searches defined by the administrator. Each search

has an entry in the FORM_SEARCH table, and the fields that define the search form are in the

FORM_SEARCH_FIELDS table. The following chart describes the columns in the FORM_SEARCH table.

Field Data Type Description

search_id integer Unique identifier for the specified search. This is an
administrative ID, generated by the Telescope Admin
application.

search_name nvarchar(64) Name of the search as shown to the users.

 Telescope Database Internals Guide

 Page 107 of 162 2/12/19

FORM_SEARCH_FIELDS

The FORM_SEARCH_FIELDS table stores information about the search forms defined by the administrator. Each

search has an entry in the FORM_SEARCH table, and the fields that define the search form are in the

FORM_SEARCH_FIELDS table. The following chart describes the columns in the FORM_SEARCH_FIELDS table.

Field Data Type Description

field_id integer Unique identifier for each row in the FORM_SEARCH_FIELDS
table.

search_id integer Cross-reference to the FORM_SEARCH table. Indicates the
search to which this field belongs.

field_order short integer Ordering on the search form of this field. This field contains a
number from 1 .. n, where n is the number of fields in the
form search.

col_name nvarchar(64) Name of the column (from the column_name field in the
EXTRA_COLUMNS table) in the metadata model that
represents the field being searched by this form search.

input_type short integer Type of input this field requires from the user. Valid values for
this column are:

1 text input

2 popup menu

3 live popup menu

col_idx integer Cross-reference to the ID field in the EXTRA_COLUMNS table
for the column with which the popup menu is associated.

init_value nvarchar(255) A default initial value.

open_paren nchar(1) A value of “Y” means that this row is a “(“ character.

close_paren nchar(1) A value of “Y” means that this row is a “)“ character.

 Telescope Database Internals Guide

 Page 108 of 162 2/12/19

Field Data Type Description

operator integer List of operators:

1 Is

2 Is Not

3 Less Than

4 Greater Than

5 Less Than Or Equal To

6 Greater Than Or Equal To

7 Contains

8 Does Not Contain

9 Starts With

10 Does Not Start With

11 Ends With

12 Does Not End With

13 User Choose

conjunction integer 1 AND

2 OR

FORM_SEARCH_VALUES

The FORM_SEARCH_VALUES table presents popup menus for any field in a form search which are of the “live

popup” input type. The following chart describes the columns in the FORM_SEARCH_VALUES table.

Field Data Type Description

value_id integer A unique identifier for each row in the FORM_SEARCH
_VALUES table.

field_id integer A reference to the field, in the FORM_SEARCH_FIELDS table,
for which this value applies.

valuestr nvarchar(255) The actual value of the item in the popup menu. Items
displayed in the search form’s popup menus are ordered
alphabetically on this column.

HIER_ITEMS (Deprecated)

DEPRECATED. The HIER_ITEMS table has been replaced by the HIER_LEVELS table described below.

 Telescope Database Internals Guide

 Page 109 of 162 2/12/19

HIER_LEVELS (Tree Search)

The HIER_LEVELS table contains information about each level of the hierarchy in tree searches. The following

chart describes the columns in the HIER_LEVELS table.

Field Data Type Description

hier_id integer Cross reference to the HIERARCHIES table.

level_id integer The level in the hierarchy for which this record applies. This is
a value from 1 .. n where n is the number of levels in the

hierarchy.

level_definition nvarchar(4000) Contains the XML text of the level definition.

HIERARCHIES

The HIERARCHIES table describes the hierarchies of fields that have been set up by the administrator for tree

searches in TSAdmin.

The following chart describes the columns in the HIERARCHIES table.

Field Data Type Description

hier_id integer Unique identifier for the hierarchy, generated automatically.

name nchar(64) Name describing the hierarchy to the users. This name can be
anything the administrator wishes, but will default to the
names of the fields used in the hierarchy, separated by
colons, for example, “country:state:city”.

SAVED_SEARCHES

The SAVED_SEARCHES table contains information about the global saved searches that have been added from

either the Field Search or Keyword Search dialogs. The following chart describes the columns in the

SAVED_SEARCHES table.

Field Data Type Description

id integer A unique key for this table, generated automatically.

search_name nchar(32) Name of the saved search as displayed to the user.

 Telescope Database Internals Guide

 Page 110 of 162 2/12/19

Field Data Type Description

search_type nchar(1) Flag that indicates which dialog the search was saved from,
possible values are:

K – Keyword search.

F – Field Search dialog.

search_text nvarchar(max) Text of the search, the format of which is dependent on
whether search_type is “F” or “K”.

user_name nvarchar(32) The user creating the saved search.

SEARCH_INDEX_ACTIONS

The SEARCH_INDEX_ACTIONS table is used in the Solr Search method by the Indexing Broker to track indexing

actions. Every time the Indexing Broker picks up a batch of record IDs to process, before starting the indexing

process it writes a row for each record ID into the search_index_actions table.

The following chart describes the columns in the SEARCH_INDEX_ACTIONS table.

Field Data Type Description

record_id integer The Telescope asset record ID.

 Telescope Database Internals Guide

 Page 111 of 162 2/12/19

Field Data Type Description

status smallint An integer indicating the processing status of that record ID.

When a record ID row is initially created, its status value is
set to “-1”. After data for a record ID is sent successfully to
the Solr Multicore, the status is updated to value “0”.
Indexing failures produce negative values, as listed below. All

record IDs with negative status numbers are periodically
resent to Solr for indexing.

Status Values:

0

Record ID was successfully sent to Solr for search indexing.

-1

Indexing is pending. The record has been added to the queue

for processing.

-2

The record has to be reindexed because data in the Telescope
database has changed.

-3

The indexer could not connect to Solr. (Solr could be down.)

-4

The Telescope database query timed out (it took over 30
secs).

-5

There was a Telescope database error when retrieving data.

-6

There is insufficient memory to hold the data retrieved from

Telescope.

Note: If a Child Indexing Broker fails while in the middle of
processing a batch of assets, those assets may be left in an
abnormal state where they will no longer be processed, even
with a -1 status. In this case, these assets require manual
intervention by an administrator to adjust the queue and

reset from pending (-1) to a ready for processing (-2) status
using the following SQL command: update
search_index_actions set status = -2 where status = -1;

index_time datetime The time when the latest action was executed on the record
ID.

user_name nvarchar(32) The user who initiated the action. (Typically, “System,” or the
Indexing Broker.)

broker_name nvarchar(32) The IP address of the machine running the Indexing Broker or
Child Indexing Broker.

 Telescope Database Internals Guide

 Page 112 of 162 2/12/19

Field Data Type Description

cm_process_hash nvarchar(64) A unique value autogenerated to identify the particular
change multiple process.

The name of this column stands for “change multiple hash
code” and is built based on the following values: [hash code
of the current object]_[user session id], which makes it a

unique value per user session, and the per change multiple
process (to distinguish between the change multiple
processes if there are more than one within the same
session).

SEARCH_INDEX_LOG

The SEARCH_INDEX_LOG table is used for logging the information from the search_index_actions table. You do

not need to refer to this table; it is used internally by the Solr Search method and should not be altered.

The following chart describes the columns in the SEARCH_INDEX_LOG table.

Field Data Type Description

record_id integer See the description for the SEARCH_INDEX_ACTIONS table.

status smallint See the description for the SEARCH_INDEX_ACTIONS table.

log_status smallint The status value for the transaction processed that had the
entry added to this log table.

index_time datetime See the description for the SEARCH_INDEX_ACTIONS table.

log_time datetime The time when the entry was added to this log table.

user_name nvarchar(32) See the description for the SEARCH_INDEX_ACTIONS table.

log_user nvarchar(32) The user who completed the transaction and caused it to be

logged. (This may be a system user.)

broker_name nvarchar(32) See the description for the SEARCH_INDEX_ACTIONS table.

 Telescope Database Internals Guide

 Page 113 of 162 2/12/19

MIMiX (Synchronization Broker) Tables

MMX_SYNC

The MMX_SYNC table keeps assets synchronized between the different databases in a Synchronization Broker

implementation. This table reflects data from the system that made the most recent change.

The following chart describes the columns in the MMX_SYNC table.

Field Data Type Description

record_id integer Cross-reference to the asset’s record_id in the EDITORIAL

table.

orig_id integer The record_id of the asset in the originating database.

orig_source nchar(32) The name of the source database as defined in the
PushSettings.plist file.

 Telescope Database Internals Guide

 Page 114 of 162 2/12/19

Distribution Broker Tables

DISTB_AUDIT_TRAIL

The DISTB_AUDIT_TRAIL table keeps a record of all distributed assets when the “Enable Audit Trail” option is

checked on the contract definition page. The following chart describes the columns in the DISTB_AUDIT_TRAIL

table.

Field Data Type Description

id integer Unique ID generated automatically on insert into the table.

On Oracle, this is a plain integer column with an insert trigger
to populate it from an Oracle sequence.

record_id integer Cross-reference to the asset’s record ID in the EDITORIAL

table.

rend_id integer The rendition ID of the distributed asset.

execution_time datetime

(timestamp)

The time and stamp when the asset was distributed.

connection_name nvarchar(255) The connection name used in the contract definition page.

contract_name nvarchar(255) The name of the contract.

dipiece_name nvarchar(255) The name of the Distribution Broker Destination I-Piece used
to distribute the asset.

 Telescope Database Internals Guide

 Page 115 of 162 2/12/19

Field Data Type Description

dest_path nvarchar(1000) A URL that points to the distributed file’s real destination
location. For failure distributions, the dest_path will be empty.

If the destination is a File Broker share, dest_path will be in
the format:

•
 filebroker:FBName/FBShareName/[NTFS]/dir1/dir2/filena
me

If the destination is a local or network mounted drive,
dest_path will be in the format (note that the Directory Path
setting in the SendToLocal Destination I-Piece will control

which form to use):

• file:C:\dir1\dir2\filename

• file://unc/dir1/dir2/filename

If the destination is an FTP location, dest_path will be in the
format:

• ftp://domain.com:port/dir1/dir2/filename

conversion_string nvarchar(3000) The conversion string applied to the asset being distributed (if
any).

message nvarchar(3000) A message indicating if the asset was successfully distributed.
In case of an error this value will contain a detailed error
message.

DISTB_DATA_RECOVERY

The DISTB_DATA_RECOVERY table grants the Distribution Broker the opportunity to distribute contracts based on

events which happened when the broker is not running. This table stores events in the database which the

Distribution will consume either immediately or, if it was down when the event happened, at the time it starts

up.

Note that, there is a registry setting that enables and disables Data Recovery. It is available for both the

Distribution Broker and the Connection Broker (DATA_RECOVERY_ENABLED). When either is set to 0 (default),

data recovery will be disabled. When set to 1 for both the Distribution Broker and the Connection Broker, data

recovery will be enabled.

The following chart describes the columns in the DISTB_DATA_RECOVERY table.

Field Data Type Description

file://///unc/dir1/dir2/filename
ftp://domain.com:port/dir1/dir2/filename

 Telescope Database Internals Guide

 Page 116 of 162 2/12/19

Field Data Type Description

id identity Unique ID generated automatically on insert into the table.
On Oracle, this is a plain integer column with an insert trigger
to populate it from an Oracle sequence.

insertion_time datetime
(timestamp)

The time and stamp when the asset was distributed (or the
contract was executed).

connection_name nvarchar(255) The connection name used in the contract definition page.

user_name nvarchar(255) The username initiating the contract.

action_code integer The type of action which was performed to execute the
contract. Ingest, Metadata Changed, etc

recordrendition_ids varchar(max) A list of record ID / rendition ID pairs which is the list of
assets onto which the contract will operate. The format is:

• <rec_id>:<rend_id> <rec_id>:<rend_id>
<rec_id>:<rend_id>…

For example: 123:1 3452:2 9985:1

 Telescope Database Internals Guide

 Page 117 of 162 2/12/19

Miscellaneous Brokers

Interoperability Broker Tables

INTEROP_EVENT_QUEUE

This table is used for functional rules to notify the Connection Broker of changes, so that the Connection Broker

can relay these events to other listeners.

Field Data Type Description

event_id integer Unique ID generated automatically on insert into the table.

queue_date datetime
(timestamp)

The date and time when the event was added.

client_subscription integer The client subscription ID passed by the functional rule.

Other Interoperability Tables (For Future Use)

The following Interoperability Broker tables are intended for future use, and are not being used at this time:

 IOB_AUTHORIZATION

 IOB_CLIENT_SUBSCRIPTION_ASSETS

 IOB_DELETE_LOG

 IOB_DELETE_QUEUE

 IOB_EDITORIAL

 IOB_IOSYS_INGEST_LOG

 IOB_IOSYS_INGEST_QUEUE

 IOB_PARTIAL_RESTORE_LOG

 IOB_PARTIAL_RESTORE_QUEUE

 IOB_RESTORE_LOG

 IOB_RESTORE_QUEUE

Rest Broker Tables (For Future Use)

The following Rest Broker tables are intended for future use, and are not being used at this time:

 Telescope Database Internals Guide

 Page 118 of 162 2/12/19

 EV_CLIENT

 EV_CLIENT_AUTH

 EV_CLIENT_SUBSCRIPTION

 EV_EVENTS_LOG

 EV_SUBSCRIPTION

 EV_SUBSCRIPTION_ACTION

Queue Broker and Connection Broker Tables (For Future Use)

The following Queue Broker and Connectivity Broker tables are intended for future use, and are not being used

at this time:

 CB_ACTION_CODES

 CB_EVENT_QUEUE

 CB_EVENTS

 QB_PROCESSES

 QB_QUEUE

 Telescope Database Internals Guide

 Page 119 of 162 2/12/19

System Tables

Telescope’s system tables serve diverse needs within the Telescope system, permitting Telescope to manage its

internal structure, storing user and database preferences, managing File Migration Policies, metadata templates,

named conversions, etc. The following tables are used for Telescope system maintenance.

AUDIT

The AUDIT table is used to track administrative changes made by users. This table keeps track of users making

the following actions:

 Creating and updating new users and groups (deleting is not tracking)

 Creating, updating, and deleting renditions

 Deleting new fields

 All other inserting, updating, and deleting actions in:

o Announcements

o Cross-platform

o Download Methods

o File Migration Policies

o Fulfillers

o Message Actions

o Named Conversions

o Functional Rules

o Searches

o Video Manager

o Watermarks

o Welcome Pages

The following chart describes the columns in the AUDIT table.

Field Data Type Description

AuditID Identity
(integer)

Unique ID generated automatically on insert into the table.

 Telescope Database Internals Guide

 Page 120 of 162 2/12/19

Field Data Type Description

UpdateDate Datetime The date/time stamp when the action took place.

DBUser nvarchar(128) The database account used to make the changes,

(TSAdmin uses a single account for all operations)

TelescopeUser nvarchar(128) The Telescope account (user name) making the change.

Type char(1) Can be one of the following:

U – Update action.

I – Insert action.

D – Delete action.

TableName nvarchar(128) The table name where the action happened.

PrimaryKeyField nvarchar(1000) The name of the Primary key field in this table.

PrimaryKeyValue nvarchar(1000) The value of the Primary key.

FieldName nvarchar(128) The field that was changed, inserted, or deleted.

OldValue nvarchar(1000) The old value of the field (the first 1000 characters). This is
NULL for an Insert operation..

NewValue nvarchar(1000) The updated/new value of the field (the first 1000

characters). This is NULL for a delete operation.

DB_INTEGRITY (Deprecated)

DEPRECATED.

DB_SETTINGS

The DB_SETTINGS table stores preferences information that is used by Telescope and I-Pieces. It is, in essence, a

registry that can be used to store any information required. This table is maintained internally by Telescope and

by individual I-Pieces. The following chart describes the columns in the DB_SETTINGS table.

Field Data Type Description

id identity Unique ID generated automatically on insert into the table. In
Oracle, this is a plain integer column with an insert trigger to
populate it from an Oracle sequence.

 Telescope Database Internals Guide

 Page 121 of 162 2/12/19

Field Data Type Description

user_name nvarchar(32) User name of the user the preference setting belongs to. If this
column is NULL, the preference setting is considered to be a
“global” preference, available to all users (unless there is a
setting with the same keyword for a particular user).

keyword nchar(32) Name of the specific preference being described. Each
preference setting is a keyword/value pair, so the keyword
column is unique for a particular user or group.

valuestr nvarchar(4000) The preference setting itself. The contents of this column

depend on the keyword associated with it.

Sample DB_SETTINGS Keywords

The following list is a small selection of possible DB_SETTINGs keywords and their values, which appear in the

valuestr field.

For more information on using the Solr search keywords, see the Telescope Administrator’s Reference Manual.

Keyword Value

disable_search_faceting When on (“TRUE”), this setting turns off the Refine Search
panel (search faceting), with the purpose to improve search
query execution times. It is off by default (meaning Refine
Search is available by default). To change this default, use

“Disable Refine Search” available in TSAdmin’s Settings tab.

The system checks for this value, and leaves Refine Search on
by default if this value is missing or has any value other than
“true” or “TRUE”. TSAdmin adds this setting with its default
(false) value to DB_SETTINGS if it is not found in the table
during a settings update when saving the Settings page in

TSAdmin.

 Telescope Database Internals Guide

 Page 122 of 162 2/12/19

Keyword Value

disable_search_highlighting When on (“TRUE”), this setting turns off search highlighting,
with the purpose to improve search query execution times. It is
off by default (meaning search highlighting is shown by
default). To change this default, use “Disable Search Term
Highlighting” available in TSAdmin’s Settings tab.

The system checks for this value, and leaves search
highlighting on by default if this value is missing or has any
value other than “true” or “TRUE”. TSAdmin adds this setting

with its default (false) value to DB_SETTINGS if it is not found
in the table during a settings update when saving the Settings
page in TSAdmin.

disable_search_weighting When on (“TRUE”), this setting turns off search relevancy
rankings, with the purpose to improve search query execution
times. It is off by default (meaning that search weightings are

available to users by default). To change this default, use
“Disable Search Relevance Weighting,” available in TSAdmin’s
Settings tab.

The system checks this value, and leaves ranking on by default
if this value is missing or has any value other than “true” or
“TRUE”. TSAdmin adds this setting with its default (false) value

to DB_SETTINGS if it is not found in the table during a settings

update when saving the Settings page in TSAdmin.

fr_debug Determines if debug logging occurs to the DEBUG_LOG table.

 If set to “Y” (the default), then log entries will be added
to the DEBUG_LOG table

 If set to NULL or “N”, logging is disabled.

To disable logging, issue the following SQL command (for MS
SQL):

update db_settings set valuestr = ‘N’ where keyword =
‘FR_DEBUG’;

ip_vira_open_clip_pl_new_win When TSWeb users are creating a new playlist (for example,
when promoting a clip), this option provides them the option to
open and view the new playlist in a separate DocInfo window,

if they select a “Open Playlist in new window” checkbox in the

confirmation dialog. (This option means they do not need to

search for the new playlist after creating it.)

Default value is “Y” (on).

 Telescope Database Internals Guide

 Page 123 of 162 2/12/19

Keyword Value

ip_viravideorendition For Video Manager files, the type of rendition.
1. VM3 asset (low resolution)
2. Actual file type (high resolution, for example MOOV)
3. QuickFind preference (ip_viravideorendition)

(For non-VM files, use the ip_proxyrendition keyword.)

For more information on setting up “ip_vira” settings for video
ingestion, see the Video and Audio Transformation Guide.

External storage of proxies:

Instead of a rendition number, the value corresponding to this
key can contain ‘vl_proxies.url’. That is, ip_viravideorendition =

‘vl_proxies.url’. This setting will allow for the playback proxy
details to come from the VL_PROXIES table. Note that the
entry created in the VL_PLAYLISTS table is always populated
whenever clips are added to a playlist.

If you use a URL, note that the value corresponding to the
ip_viravideorendition key is not an integer, and this change
may affect existing stored procedures, as well as any triggers

on the access_history table that may call these stored
procedures. In particular, the following stored procedures may
be affected: tsp_createvideoasset, tsp_createpreviewonlyasset,
tsp_createplaylistasset.

You also need to add the following MIME Type to your IIS
configuration for the .qtif (QuickTime Image File) extension:

image/x-quicktime Then restart IIS for playback to work.

ip_proxyrendition For files that are not Video Manager files (that is, MP3, MP4, or
FLSH values in the VIEWEX.data_type field), defines the type
of rendition

1. VM3 asset (low resolution)
2. Actual file type (high resolution, for example MOOV)
3. QuickFind preference (ip_viravideorendition)

For information on external storage of proxies, see the
information for ip_viravideorendition above (replacing

“ip_videorendition” for “ip_proxyrendition.”

isIndexing This is set to false initially, and set to True only while the
Indexing Broker is picking a new batch of record IDs to be
indexed. In the unlikely event that two Inexing Brokers are

indexing the same database, this flag tries to ensure they
aren’t processing the same record IDs and are splitting up the
indexing job.

lastReindexRecord The highest record ID value that was re-indexed (generally due
to an update to that record).

 Telescope Database Internals Guide

 Page 124 of 162 2/12/19

Keyword Value

lastSearchBatchIndexRecord When a batch of record IDs are picked up for processing, the
highest record ID number is stored in this value. The Indexing
Broker will look for a record ID larger than this number when it
assigns the next batch for processing.

lastSearchIndexRecord The highest record ID value that was actually sent to the Solr
Multicore. When the entire batch of record IDs is processed,
this value will equal the value of lastSearchBatchIndexRecord
(if isIndexing is set to false, this is a good indication that all
indexing is complete).

lastSearchIndexTime This timestamp setting is used internally during Telescope
database indexing.

max_failure_count The maximum number of login failures before a user is locked
out. A user is locked out when their login_fail_cnt value (in the
users table) matches the max_failure_count value.

This value is 99999 by default (a very large number to ensure

the user is not locked out).

metadata_cache_timeout To improve the Solr indexing process, this entry limits the
number of database queries issued to validate the data model
when indexing an asset. This interval setting is one minute by

default (if this entry does not exist) but can be changed by
updating the database entry for this keyword with the following
command:

update db_settings set valuestr=’<interval in milliseconds>’
where keyword =’metadata_cache_timeout’ and user_name is

null;

Note that this update may require a restart of the broker
services.

reindexlastrecord Triggers automatic reindexing should the network connection
be lost

"0”-- triggers automatic reindexing when the Child Indexing
Broker has its database connection restored.

Any other value does not trigger automatic reindexing. By
default, this value is not “0” (as of the 9.4.0.7 Telescope

release).

 Telescope Database Internals Guide

 Page 125 of 162 2/12/19

Keyword Value

ui_default_details_view Configures the Telescope installation so that TSWeb users see
alternate views when they first open an asset.

To change the popup view, replace the value of valuestr with
one of the following:

Preview – to show the preview (the default)

History – to show the History popup

Notes – to show the Notes popup

Details – to show the Info popup

DEBUG_LOG

The DEBUG_LOG table is available for logging messages from functional rules, menu functional rules, and other

database customizations. It can be populated through custom stored procedures, functions and triggers.

 Debug logging to the DEBUG_LOG table is controlled by the FR_DEBUG entry in the db_settings table.

 Calls to insert data in the DEBUG_LOG table should be done with the tsp_ins_debug_log stored

procedure, rather than being inserted directly.

 For more information on using this table, see the section, “Logging Errors from Functional Rules and

Customizations” in the Telescope Administrator’s Reference Manual.

Field Data Type Description

id identity Unique ID generated automatically on insert into the table.

Includes a timestamp.

ENTRY_DATE datetime
(timestamp)

The date of the message entry.

SOURCE nvarchar(256) The source name (recommended but optional). If not defined:

 In MS SQL, defaults to 'Unknown'.

 In Oracle, tries to make a system call to set the name

of the calling program.

RECORD_ID integer Cross-reference to the asset’s record ID in the EDITORIAL

table. If not defined, defaults to NULL

MESSAGE_TYPE nvarchar(1) The message type. 'D' (for debug), 'E' (for error), or a
customized number (as a varchar). If not defined, defaults to
NULL.

MESSAGE nvarchar(max) The text of the message (as passed by the tsp_ins_error_log

variable pc_message).

 Telescope Database Internals Guide

 Page 126 of 162 2/12/19

DL_METHODS

The DL_METHODS table stores the download methods available in the Telescope environment and their

associated directories. By default, Telescope downloads files using HTTP. The following chart describes the

columns in the DL_METHODS table.

Field Data Type Description

id integer Unique ID for the method. This is an administrative ID
generated automatically by Telescope Admin.

method_dir nvarchar(255) Directory (on the web server) where the files downloaded by
the method will be copied.

method_name nchar(32) Name of the method as it appears to the user.

class_def_yn nchar(1) A value of “Y” indicates that the method name refers to a
specific class within Telescope. For example, if you set this

field to “Y” and the method_name to “QuickLinkSetup”,
QuickLinks will be enabled as an assignable Download
Method.

ERROR_LOG (Deprecated)

This deprecated table was used for logging messages from stored procedures, as passed by the deprecated

stored procedure tsp_ins_error_log. Instead, use the DEBUG_LOG table (passed by tsp_ins_debug_log).

For information on Migrating from "error_log" implementations, see “Migration from "error_log"

implementations” in the Telescope Administrator’s Reference Manual.

FM_POLICIES

The FM_POLICIES table stores file migration policies used by the Ingest Broker. The following chart describes the

columns in the FM_POLICIES table.

Field Data Type Description

fm_name nchar(64) The name of the file migration policy.

fm_desc nvarchar(max) A description of the file migration policy.

I_PIECES (Deprecated)

DEPRECATED.

 Telescope Database Internals Guide

 Page 127 of 162 2/12/19

JOBS

To ease data entry, Telescope maintains a table of jobs or templates.

Templates created by users in Telescope are stored in the JOBS table and are available for use during data entry.

The following chart describes the columns in the JOBS table.

Field Data Type Description

job_name nvarchar(258) Name of the job, which will appear in the “Job:” popup menu
in the editorial entry dialogs.

job_data nvarchar(max) Block of text in MIMiX format that describes the contents of
the editorial fields for the job. The contents and format of this
field are identical to the contents of the “Editorial Info” file
used by Telescope.

LANGUAGE_LOCAL

The LANGUAGE_LOCAL table stores the names for supported languages. It is accessed when the language name

needs to be shown in a field called by various functions. This table is referenced from other tables in their

lang_id column

 to from the values is reserved for future use. Identifies the language (from the language_local table, lang_id

column). For example, en_US.

The following chart describes the columns in the LANGUAGE_LOCAL table.

Field Data Type Description

lang_id nchar(10) The standard ISO identifier for the language. For example,
es_ES.

name nvarchar(128) Standard English name for this language. For example,
“Spanish (Spain)”.

local_name nvarchar(128) The local name for this language. For example, “Español
(España)”.

search_code nchar(2) The root of the ISO language identifier. For example, “es”.

date_format nvarchar(50) This field is intended for future use.

number_format nvarchar(50) This field is intended for future use.

currency_format nvarchar(50) This field is intended for future use.

 Telescope Database Internals Guide

 Page 128 of 162 2/12/19

NAMED_CONV

The NAMED_CONV table contains a list of the defined “named conversions”. Named conversions are conversion

settings grouped under an identifier. They provide a convenient way for Telescope users to select pre-defined

formats for the assets they copy or download. The following chart describes the columns in the NAMED_CONV

table.

Field Data Type Description

id integer A unique key for this table, automatically generated.

conv_name nvarchar(255) The name of the conversion as it shows to the user.

conv_types nvarchar(255) A comma-separated list of 4-character file types from the
database to which this conversion applies.

conv_string nvarchar(4000) The conversion string for the named conversion.

conv_factor integer The percentage of the original file size which the converted file

will be, approximately.

In Telescope 9.1 conv_factor is updated to big integer

conv_size integer The approximate final size, in bytes, of the converted file. This

value is only required if the CONV_FACTOR field is empty.

In Telescope 9.1 conv_size is updated to big integer

NPS_DBCHNG_LOG (Internal Use)

This table is used by NorthPlains for internal testing purposes.

RENDITIONS

A rendition is a copy of a file that has the same content but is presented in a different format. A typical usage in

Telescope is to render video and audio files during ingest to a specific playback format, also called a proxy.

In the Telescope environment, an individual asset can have multiple renditions. For example, you might have an

asset that has three renditions: a high-resolution TIFF image, a medium-resolution JPEG image, and a low-

resolution GIF image. Entries into the RENDITIONS table indicate the types of renditions the Telescope

application will track for an individual environment.

The following chart describes the columns in the RENDITIONS table.

Field Data Type Description

 Telescope Database Internals Guide

 Page 129 of 162 2/12/19

Field Data Type Description

rend_id integer Unique identifier created by Telescope Admin when the
rendition is created.

rend_name nchar(32) Name associated with the rendition type used for display
purposes.

rend_order integer Ordering of the rendition, from 1 .. N, which determines its
placement in popup menus, etc. This ordering also determines
which rendition is used in a document to generate the
thumbnail and extended view for the document.

SEQUENCES

The SEQUENCES table controls the primary key values of tables in the Telescope database by storing the current

maximum value of the primary key used by each table. The table stores the current maximum value of the

sequence (the record_id) and the table it applies to (sequence_name). These values are sometimes required by

the Telescope software.

For example, an entry with record_id = “447778” and sequence_name = “EDITORIAL” indicates that the maximum

value of primary keys used in the EDITORIAL table is currently “447778”. The SEQUENCES table will contain

similar entries for all Telescope tables using primary keys. For example,

368 FORM_SEARCH_FIELDS

18137 access_history

5 announcement_lists

183 announcements

2218 doc_file_info

447778 editorial

And so on …

Whenever Telescope inserts a record into a table with a primary key, it queries the SEQUENCES table to get the

current value and then increments that value accordingly. Any customizations that insert data into Telescope

data tables must take into consideration the associated sequences and increment them accordingly. Failure to do

so will result in Telescope throwing “Duplicate value” exceptions.

The following chart describes the columns in the SEQUENCES table.

Field Data Type Description

record_id integer Record ID currently in use for the primary key in the table.

 Telescope Database Internals Guide

 Page 130 of 162 2/12/19

sequence_name nvarchar(32) Name of the sequence (which is a Telescope table name) for
which the database is storing the unique ID.

SES_POOLS

The SES_POOLS table is used to hold the pool names as defined in Telescope Admin. The following chart

describes the columns in the SES_POOLS table.

Field Data Type Description

id integer Unique ID generated automatically on insert into the table. In
Oracle, this is a plain integer column with an insert trigger to
populate it from an Oracle sequence.

user_class nchar(2) The 2-character user class code for the user class of the user.

pool_name nchar(32) The name of the pool.

SHARE_MAPPINGS

The SHARE_MAPPINGS table is used by Macintosh software to create FILE_LOCATION information in the

DOC_RENDITIONS table on import and to locate files imported by the Windows client. Entries in this table are

created using Telescope Administrator. The following chart describes the columns in the SHARE_MAPPINGS

table.

Field Data Type Description

share_name nchar(64) Name of the Windows share as used by the Windows client in
the file_location field.

machine_name nchar(64) Name of the machine as used by the Windows client in the
file_location field.

as_zone nvarchar(64) AppleShare zone in which the machine resides as used by the
Macintosh client.

as_server nvarchar(64) Name of the machine as used by the Macintosh client.

as_path nvarchar(255) Path from the root of the shared volume to the shared directory
as used by the Macintosh client. Typically, this will be the
volume name of the shared AppleShare volume, followed by a
colon (e.g., “Volume:”).

sh_user nchar(32) Default user name used by Telescope to log into this share.

sh_password nchar(32) Default password used by Telescope to log into this share.

 Telescope Database Internals Guide

 Page 131 of 162 2/12/19

Field Data Type Description

import_flag nchar(1) If set to “Y” this share is used for importing and any other
value (including NULL) otherwise. At present, this flag is
unsupported, but will be used in future releases.

filesys nchar(10) Type of file system in use on the network share. Valid values
depend on the file system types, but some examples are
“NTFS”, “MacOS”, and “UNIX”.

SORTS (Deprecated)

DEPRECATED AND REMOVED.

TS_STATISTICS

The TS_STATISTICS table keeps statistical information about Telescope use.

In very active Telescope environments it is recommended that indexes be added to provide faster access for

frequently used statistics. In these environments, the TS_STATISTICS table can also grow very quickly. To prevent

database fragmentation and to distribute I/O, it is advisable to physically store the TS_STATISTICS table

separately. (In an Oracle environment this can be achieved by using a separate table space. DBAs may want to

consider placing the ACCESS_HISTORY and TS_STATISTICS tables together on one table space.) The following

chart describes the columns in the TS_STATISTICS table.

Field Data Type Description

action_id identity Unique ID generated automatically on insert into the table. On
Oracle, this is a plain integer column with an insert trigger to
populate it from an Oracle sequence.

user_name nvarchar(32) User name of the user who performed the action.

action_time timestamp

(datetime)

Timestamp that indicates when the action was performed.

 Telescope Database Internals Guide

 Page 132 of 162 2/12/19

Field Data Type Description

action_code integer Integer that indicates what action was performed. Possible
values are:

1 Login

2 Search

3 Download

4 Deletion

5 Move Files

6 Import

7 File Request

8 Check Out

9 Check In

11 Delete collection (Catalog)

99 Log Out

action_desc nvarchar(255) Optional textual description of the action that was performed.
For “Deletion” actions, this field contains the name of the file

that was deleted. For “Search” actions, it contains the name of
the search performed (e.g., “Form” or “Hierarchical”).

For searches, the search name is appended to this string,
should a name for the search exist. See search_terms for more
information on accessing search query data.

action_count big integer Contents of this field vary depending on what is in action_code.

Login – This value is 0.

Search – The number of documents returned from the search.

Download – The total number of bytes downloaded.

Deletion – The total number of documents deleted.

Move Files – The total number of bytes moved.

Import – The total number of documents imported.

File Request – The total number of documents requested.

Check Out – The number of files checked-out –1, or more
through the Download Cart.

Check In – The number of files checked-in – usually 1.

Log Out – The number of minutes the user was logged-in.

In Telescope 9.1 action_count is updated to big integer

session_id numeric(19,0) Unique session ID assigned to the client’s session when the
user logs in (from the Session Broker).

search_terms nvarchar(max)
(in SQL
Server),

CLOB (in

Oracle)

This column is populated with the search queries entered by
users for Simple, Advanced and Form Searches, allowing the
use of SQL queries to generate reports from this data. This
information is stored as the Solr search string, in Solr format.

The search name is appended to the string saved in the
action_desc column, should a name for the search exist.

 Telescope Database Internals Guide

 Page 133 of 162 2/12/19

TYPE_CODES

The TYPE_CODES table is used to provide a “real” description of file types as stored in the DOC_RENDITIONS

table. Telescope’s standard 4-character file type can be confusing to the users, so TYPE_CODES is a “mapping”

table that connects the 4-character file types with real names. The TYPE_CODES table also stores a default

thumbnail for the file type, which is used if Telescope is unable to generate a thumbnail for the file type. This is

useful for file types which do not have graphical representations (such as sound files). The following chart

describes the columns in the TYPE_CODES table.

Field Data Type Description

type_code nchar(4) The 4-character type code, contained in the DOC_RENDITIONS
table.

type_name nchar(256) A human-readable name that Telescope will use to display the
file type in the Document Info window.

default_thumbnail binary The encrypted binary data for the default thumbnail to display

for this file type, in the event that no thumbnail can be
generated from the file’s contents by the Graphics Broker
during ingest.

 Telescope Database Internals Guide

 Page 134 of 162 2/12/19

Telescope Query Generator

Telescope provides users with the ability to perform ad hoc queries against metadata that resides in several

different tables. Generally speaking, Telescope users in a particular environment tend to search the system in

well-defined ways. That is, there is usually a set of searches that are performed regularly as part of the workflow.

In order to get the most out of the system, these search behaviors should be identified, both through workflow

analysis and monitoring the database. To make the most out of a Telescope system, the results of this

monitoring should be used to tune the underlying database.

In a system where there is external data referenced (either using a view or metadata residing in custom tables in

the Telescope schema), it is not uncommon for a user to enter a criteria that causes a search across three or

more tables: EDITORIAL, DOC_RENDITIONS, and one or more custom tables or views. Telescope performs the

search using an outer join between the tables using the following format:

select RECORD_ID from EDITORIAL e, DOC_RENDITIONS d, CUSTOM_TABLE d1 where
e.RECORD_ID = d.RECORD_ID and e.RECORD_ID = d1.RECORD_ID and (user’s where
clause) and (user’s search criteria);

The Telescope application always assumes that the search should be case-insensitive. This is achieved through

the use of the RDBMS UPPER function. For example, if the user searches for a file named “rose.jpg”, the query

would include:

and upper(d.FILE_NAME=’ROSE.JPG’)

A standard index on the FILE_NAME column on some databases would not assist in the performance of this

query. Alternative tuning methods should be considered, such as the possible use of a functional rule in Oracle.

Depending on the RDBMS, adding constraints such as primary and foreign keys may assist with the execution of

the query.

 Telescope Database Internals Guide

 Page 135 of 162 2/12/19

Appendix: Programmability

WARNING: Do not delete, disable, or modify any Telescope Function, Stored Procedure, Triggers, or

Views.

Functions and Stored Procedures

tsp_acquirecheckoutlock

Database Type Programmability

SQL Server Procedure

Oracle Function

Calls the tsp_acquirecheckoutlock_impl procedure to lock an asset so it cannot be checked out by another user.

tsp_acquirecheckoutlock(record_id)

record_id: The record ID of the asset being checked out.

Returns: The return code from the tsp_acquirecheckoutlock_impl procedure.

tsp_acquirecheckoutlock_impl

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Marks a record as checked out so other users cannot check out the file.

tsp_acquirecheckoutlock_impl(record_id, ret)

 Telescope Database Internals Guide

 Page 136 of 162 2/12/19

record_id: The record ID of the asset being checked out.

ret: The return code as follows:

0 – if the file was successfully checked out.

1 – if the file is already checked out.

-1 – if file was not found.

Returns: See “ret” above.

tsp_add_setting

Database Type Programmability

SQL Server Procedure

Oracle Function

Sets a db_settings table entry.

tsp_add_setting(user_name, keyword, valuestr)

user_name: The username or group name to which this value applies.

keyword: The name of the keyword.

valuestr: The value to set.

Returns: 0

tsfn_charindexr

Database Type Programmability

SQL Server Function

Oracle N/A

Utility function to search for a pattern in a string, starting from the end.

 Telescope Database Internals Guide

 Page 137 of 162 2/12/19

tsfn_charindexr(expression1, expression2, start_location)

expression1: The pattern to search for.

expression2: The string to search in.

start_location: The position in the string to start the search from. By default, the search is started

from the end.

Returns: The position of the pattern you searched for in the string.

tsp_createMetadataField

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Creates metadata fields.

tsp_createMetadataField (column_name, table_name, column_display, datatype, dbdatatype, length,

isrequired, issearchon, isfaceton, isvalidate, description, popup, isCascade, cascadeColumn,

cascadeValues, bucketType, bucketSize, bucketStart, bucketEnd, bucketStartInt, bucketEndInt,

bucketTimeRange, isSkip);

column_name: The name of the Field, e.g.: "asset_type"

table_name: The name of the table.

column_display: The Display Name and localization for that name(in xml fomat), e.g.:

"<DISPLAYNAME><LOCAL NAME="default">Asset Type</LOCAL></DISPLAYNAME>"

datatype: A number that represent a data type in Telescope

dbdata_type: The type of the field

length: The maximum length for the values

isrequired: If the field will be required, supported values: 'Y', 'N'

issearchon: If the field will be search on, supported values: 'Y', 'N'

isfaceton: If the field will be facet on, supported values: 'Y', 'N'

 Telescope Database Internals Guide

 Page 138 of 162 2/12/19

isvalidate: If the field will be validated, supported values: 'Y', 'N'

description: The description of the field

popup: The Popup values whith localization(in xml fomat), e.g.: "<POPUP><LOCAL

NAME="default">|value1|value2|</LOCAL></POPUP>"

isCascade: If the field has a cascade relation to display it, supported values: 'Y', 'N'

cascadeColumn: The name of the field with the cascade raltion

cascadeValues: The values of the popup that will used to show this field

bucketType: The type of the bucket (Values, Range)

bucketSize: The size of the bucket

bucketStart: The start range (Date format)

bucketEnd: The end range (Date format)

bucketStartInt: The start range (Integer format)

bucketEndInt: The end range (Integer format)

bucketTimeRange: The range type if the range is for date (Seconds, Minutes, Years,etc)

isSkip: If the field already exist will be skipped, supported values: 'Y', 'N'

Returns: N/A

tsp_createMetadataSmartCatalog

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Used by tstrg_embedded_metadata_ins to create new smart collections (catalogs) based on the tag information

returned from the Metadata I-piece. See also tsp_deleteMetadataSmartCatalog.

tsp_createMetadataSmartCatalog(tag)

tag: The new collection name.

Returns: N/A

 Telescope Database Internals Guide

 Page 139 of 162 2/12/19

tsp_createNRtable

Database Type Programmability

SQL Server Procedure

Oracle Function

Creates a table necessary for normalized repeating fields. The table name is the same as the column name

specified, with the prefix "nr_" added. This function is used by internal North Plains tools to populate Telescope

environments with metadata.

tsp_ createNRtable (column_name, column_display, length, isrequired, issearchon, isfaceton, isskip)

column_name: The name of the column (nvarchar2). The name of the table created is the same as this

name, with the prefix "nr_" added.

column_display: The display name and localization for that name (in XML format), varchar. For example:

"<DISPLAYNAME><LOCAL NAME="default"> Visible to Departments</LOCAL></DISPLAYNAME>"

length: The length of the column (nvarchar2, must be a number ranging from 1 to 255).

isrequired: Specifies if the column is required (‘Y’ or ‘N’, default is ‘N', no)

issearchon: Specifies if users can search on contents in the column (‘Y’ or ‘N’, default is ‘N', no)

isfaceton: Specifies if the column will be included in the Refine Search panel (‘Y’ or ‘N’, default is ‘N', no)

isskip: Specifies if the column should be skipped (‘Y’ or ‘N’, default is ‘N', no)

Returns: 0 if successful, -1 if not successful.

Example:

exec tsp_createNRtable 'nr_vis_department', '<DISPLAYNAME><LOCAL NAME="default">Visible to

Departments</LOCAL><LOCAL NAME="fr_CA">Visible aux ministères</LOCAL><LOCAL NAME="es_ES">Visible

a Departamentos</LOCAL></DISPLAYNAME>', '150', 'N', 'Y', 'Y', '';

tsp_createplaylistasset

Database Type Programmability

SQL Server Procedure

 Telescope Database Internals Guide

 Page 140 of 162 2/12/19

Oracle Procedure

Promotes an asset to a playlist by setting the asset’s data_type in the VIEWEX table to ‘TPLT’ and creating an

entry for the asset in the DOC_RENDITIONS table.

tsp_createplaylistasset(record_id)

record_id: The record ID of the asset being promoted to a playlist.

Returns: N/A

tsp_createplaylistfromclip

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Creates a "clip asset" from a selected clip in the Video Manager interface.

tsp_createplaylistfromclip (record_id, inoutmsec, playlist_name)

record_id: The record IDof the asset being checked out.

inoutmsec: The in and out values (in milliseconds), in the following format: "<inmsec>:<outmsec>"

playlist_name: The field the playlist name should be put into.

Returns: 0 if successful, -1 with error message if not successful.

tsp_createpreviewonlyasset

Database Type Programmability

SQL Server Procedure

Oracle Procedure

 Telescope Database Internals Guide

 Page 141 of 162 2/12/19

Designates an asset as a “preview-only” asset that will open in the default preview by setting the asset’s

data_type in the VIEWEX table to the file type of the asset and creating an entry for the asset in the

DOC_RENDTIONS table.

tsp_createpreviewonlyasset(record_id)

record_id: The record ID of the asset being created.

Returns: N/A

tsp_createTableExtendEditorial (Internal Use)

Database Type Programmability

SQL Server Procedure

Oracle Procedure

This procedure is used by internal tools to create tables linked to the EDITORIAL table and to extend the

metadata model.

tsp_createvideoasset

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Designates an asset as a video to be edited in Video Manager 3.0 by setting the asset’s data_type in the VIEWEX

table to ‘ViRa’ and creating an entry for the asset in the DOC_RENDTIONS table.

tsp_createvideoasset(record_id)

record_id: The record ID of the asset being created.

Returns: N/A

 Telescope Database Internals Guide

 Page 142 of 162 2/12/19

tsp_delete_record

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Properly removes a record and its access history from the database.

tsp_delete_record(record_id)

record_id: The record ID of the asset being deleted.

Returns: N/A

tsp_deleteMetadataSmartCatalog

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Deletes a smart collection (catalog).

tsp_deleteMetadataSmartCatalog(tag)

tag: The catalog name to be deleted.

Returns: N/A

tsp_delete_version

Database Type Programmability

SQL Server Procedure

 Telescope Database Internals Guide

 Page 143 of 162 2/12/19

Oracle Procedure

Properly removes a version from the database.

tsp_delete_version(version_id)

version_id: The version ID being deleted.

Returns: N/A

tsp_FindAllChildren

Database Type Programmability

SQL Server Procedure

Oracle Function

Finds all placed files for the Collect function in the Component Object View.

tsp_FindAllChildren(record_id, rend_ids, where_clause)

record_id: The record ID of the parent asset.

rend_ids: The rendition IDs of the parent asset.

where_clause: A where clause to exclude assets not allowed by the security model.

Returns: A table containing the record id, rend id, and file checksum for each record found.

tsp_FindAllParents

Database Type Programmability

SQL Server Procedure

Oracle Function

 Telescope Database Internals Guide

 Page 144 of 162 2/12/19

Finds all assets a placed file is defined as a child of (i.e. assets that have the file listed in a container field).

tsp_FindAllParents(record_id, rend_id, where_clause)

record_id: The record ID of the child asset.

rend_id: The rendition ID of the child asset.

where_clause: A where clause to exclude assets not allowed by the security model.

Returns: A table containing the record id, rend id, and file checksum for each record found.

tsp_FindChildAsset

Database Type Programmability

SQL Server Procedure

Oracle Function

Finds the asset when a user clicks a placed file in the Component Object View.

tsp_FindChildAsset(record_id, page_num, geometry_order, where_clause)

record_id: The record ID of the child asset.

page_num: The page number of the asset.

geometry_order: The geometry order of the asset.

where_clause: A where clause to exclude assets not allowed by the security model.

Returns: A table containing the record id, rend id, and file checksum for the record.

tsfn_getcontainers

Database Type Programmability

SQL Server Function

Oracle Function

 Telescope Database Internals Guide

 Page 145 of 162 2/12/19

For Advanced Search, includes "Member of" container fields for the specified user. Fields are filtered based on

the passed-in user's group's field visibility.

tsfn_getcontainers(vUserName)

vUserName: A user name (nvarchar(32)). The user name of the user requesting the Advanced Search

Returns: The column ID and name of all the container fields the user has permission to see (nvarchar(max)). This

data is JSON-encoded and in the format [{"id": 123, "name": "abcde"}, ...] Fields will be filtered based on the

passed-in user's group's field visibility.

tsp_getfieldvalue

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Called by other procedures, this procedure gets the value of a field in a given table for a given record ID.

tsp_getfieldvalue(record_id, table_column_name, value)

record_id: The record ID of the asset.

table_column_name: The table column name.

value: This is an ‘out’ field that will contain the requested field.

Returns: The ‘value’ field above.

tsp_getfiletypes

Database Type Programmability

SQL Server Procedure

Oracle Procedure

 Telescope Database Internals Guide

 Page 146 of 162 2/12/19

Internal procedure used to get a list of current file types, used for advanced searches. There are no parameters

for this procedure. Returns a JSON-encoded string consisting of the file_types from the TYPE_CODES table.

tsfn_getfiletypes

Database Type Programmability

SQL Server Function

Oracle Function

Internal function used to get a list of current file types, used for advanced searches. There are no parameters for

this function. Returns a JSON-encoded string consisting of the file_types from the TYPE_CODES table.

tsp_getMimix

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Returns metadata information in MIMiX format for an asset with a specified record ID.

tsp_getMimix(record_id)

record_id: The record ID of the asset being requested.

getnegativeExtraColumnsID (Internal Use)

This procedure is used by internal tools. It calls the tsp_getnextid_impl procedure to get the next available

number in a sequence from the SEQUENCES table.

 Telescope Database Internals Guide

 Page 147 of 162 2/12/19

tsp_getnextid_impl

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Gets the next available number in a sequence, in order to provide a unique ID for tables requiring it.

Some tables require unique IDs to identify new entries, which are generated by incrementing the latest value,

stored in the SEQUENCES table. This procedure increments the latest number in this table to provide a unique

ID. If the table you are requesting the ID for does not have a record in the SEQUENCES table, this procedure

creates one.

tsp_getnextid_impl(sequence_name, column_name, sequence_id, number_to_allocate,
sequence_direction)

sequence_name: The name of the sequence (which is a Telescope table name).

column_name: The name of the column containing the value the ID is for.

sequence_id: This is an ‘out’ field that will contain the current max value of the primary key for the

table you are searching on

number_to_allocate: The number of ids to allocate to the sequence (for batch operations). This

number is added to the current max value and set as the new next available ID.

sequence_direction: The direction of the sequence; pass “1” to increase the values, pass “-1” to

decrease the values.

Returns: The sequence_id above.

For more information about using sequences, see “SEQUENCES” on page 129.

tsfn_getpopups

Returns popups in JSON-encoded format.

tsfn_jsonencode(vUserName)

vUserName: Used to determine the language of the popups to return

Returns: A string of the popups as JSON-encoded characters.

 Telescope Database Internals Guide

 Page 148 of 162 2/12/19

tsp_getpopups

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Returns a JSON encoded list of popup items based on the user’s permissions.

tsp_getpopups (vUserName)

vUserName: The user name of the current user.

Returns: A string listing the popups, in JSON-encoded characters.

tsp_getplaylistassetname

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Because playlist assets are metadata-only assets that act as containers for clips from other assets, they do not

have a file name or other obvious identifier associated with them. To make it easier for users to distinguish

between playlist assets, they may create a metadata field and designate it as the playlist “name.” This procedure

gets the value of that field for a given record ID.

tsp_getplaylistassetname(record_id, value)

record_id: The record ID of the asset.

value: This is an ‘out’ field that will contain the name of the playlist asset defined in the db_settings

table.

Returns: The ‘value’ field above.

 Telescope Database Internals Guide

 Page 149 of 162 2/12/19

tsp_getsetting

Database Type Programmability

SQL Server Function

Oracle Function

Gets the name of the FlipFactory I-Piece queue to process an imported video asset with.

tsp_getsetting(user_name, keyword)

user_name: The user name of the default import user (as defined in the

com.northplains.ipiece.flipfactory.xml file).

keyword: The keyword of the entry in the DB_SETTINGS table that defines the queue to use for this

user. The tsp_ipflip_getimportqueue procedure passes 'ipflip_importqueue' by default.

Returns: The name of the FlipFactory queue.

tsp_getvideoassetdescriptor

Database Type Programmability

SQL Server Procedure

Oracle Function

Used by the trigger on the ACCESS_HISTORY table to determine whether a new or updated asset is a playlist, a

video or a preview-only asset.

tsp_getvideoassetdescriptor(record_id, type)

record_id: The record ID of the asset being promoted to a playlist.

type: The asset type as passed by the trigger on the ACCESS_HISTORY table.

Returns: 0

 Telescope Database Internals Guide

 Page 150 of 162 2/12/19

tsp_ins_debug_log

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Calls to insert data in the DEBUG_LOG table should be done with the TSP_INS_DEBUG_LOG stored procedure,

rather than being inserted directly. The TSP_INS_DEBUG_LOG method signature (in both SQL Server and Oracle)

is:

(exec) tsp_ins_debug_log <Message>, <Source>, <Type>, <Record_id>, <Debug Y/N>

Where:

 <Message> is the message text (required).

 <Source> is the source name (recommended but optional). If not defined:

o In MS SQL, defaults to 'Unknown'.

o In Oracle, tries to make a system call to set the name of the calling program.

 <Type> is the message type. 'D' (for debug), 'E' (for error), or a customized number (as a varchar). If not

defined, defaults to NULL.

 <Record_id> is the asset record ID (record_id). If not defined, defaults to NULL.

 <Debug Y/N> is a flag to indicate whether or not the stored procedure should make a log entry. If set

to Y, it will always log, say for a critical error (even if the "FR_DEBUG" value in the db_settings table is

set to N). If set to N, it will not make a log entry (even if the "FR_DEBUG" value in the db_settings table

is set to Y). If this flag is not passed, the procedure will query the "FR_DEBUG" value in the db_settings

table to determine whether or not to log.

NOTE: The order of these parameters has changed from those of most of the preceding tsp_ins_error_log

method, in order to put required parameters first. For information on Migrating from "error_log"

implementations, see “Migration from "error_log" implementations” in the Telescope Administrator’s Reference

Manual.

tsp_ins_error_log (Deprecated)

This deprecated procedure was used for logging messages to the deprecated ERROR_LOG table.

 Telescope Database Internals Guide

 Page 151 of 162 2/12/19

Instead, use the DEBUG_LOG table (passed by tsp_ins_debug_log). For information on Migrating from "error_log"

implementations, see “Migration from "error_log" implementations” in the Telescope Administrator’s Reference

Manual.

tsp_ipflip_getimportqueue

Database Type Programmability

SQL Server Procedure

Oracle Function

Calls the tsp_getsetting function to get the name of the FlipFactory I-Piece queue to process an imported video

file with.

tsp_ipflip_getimportqueue(record_id, rend_id, user_name, file_info)

record_id: DEPRECATED.

rend_id: DEPRECATED.

user_name: The user name of the default import user (as defined in the

com.northplains.ipiece.flipfactory.xml file).

file_info: DEPRECATED.

Returns: The name of the FlipFactory I-Piece queue.

tsfn_jsonencode (Internal Use)

This is an internal function used for JSON encoding.

tsfn_MsecToSmpte

Database Type Programmability

 Telescope Database Internals Guide

 Page 152 of 162 2/12/19

SQL Server Function

Oracle Function

Converts the video timecode from milliseconds to an SMPTE string.

tsfn_MsecToSmpte(msec, frame_rate)

msec: The video timecode in milliseconds.

frame_rate: The video frame rate.

Returns: The video timecode in a SMPTE-formatted string (in the format hh:mm:ss:frame).

tsp_newdocument

Database Type Programmability

SQL Server Procedure

Oracle Procedure

This is a sample procedure to show the use of Telescope procedures.

tsp_newdocument(record_id)

record_id: This an ‘out’ field that will contain the ID of the new document created.

Returns: The ‘record_id field above.

tsp_parse_str

Database Type Programmability

SQL Server Procedure

Oracle Procedure

 Telescope Database Internals Guide

 Page 153 of 162 2/12/19

Parses the content and returns the parsed values in a string.

tsp_parse_str(str, delimiter)

str: The string to be parsed.

delimiter: The delimiter to parse by.

Returns: The result of the parse.

tsp_popularFeed, tsfn_popularFeed

Database Type Programmability

SQL Server Procedure

(tsp_popularFeed)

Oracle Procedure

(tsfn_popularFeed)

Retrieves and returns (as a JSON array) the 10 most popular assets in the database (based on the number of

times the assets have been downloaded).

tsp_popularFeed(user_name)

user_name: A user name (nvarchar(32), optional). If present, the user's where clause is used to compile

the top ten list. If not present, the top ten is compiled without any where clause.

Returns: A JSON array

tsp_recentFeed, tsfn_recentFeed

Database Type Programmability

SQL Server Procedure

(tsp_recentFeed)

 Telescope Database Internals Guide

 Page 154 of 162 2/12/19

Oracle Procedure

(tsfn_recentFeed)

Retrieves and returns (as a JSON array) the 10 most recent assets in the database based on the access-history

for access type 4

tsp_recentFeed(user_name)

user_name: A user name (nvarchar(32), optional). If present, the user's where clause is used to compile

the top ten list. If not present, the top ten is compiled without any where clause.

Returns: A JSON array

tsp_setupLanguages

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Sets up default and supported languages.

tsp_setupLanguages (default_language, language_ids)

default_language: The code of the default language, e.g.: "en_US"

language_ids: The list of the supported languages separated by a comma, e.g.: "en_US,fr_CA,es_ES"

Returns: Return code (Integer)

tsfn_SmpteToMsec

Database Type Programmability

SQL Server Function

Oracle Function

 Telescope Database Internals Guide

 Page 155 of 162 2/12/19

Converts the video timecode from SMPTE bits to milliseconds.

tsfn_SmpteToMsec(smpte, rate)

smpte: The video timecode in SMPTE bits (in the format hh:mm:ss:frame).

rate: The video frame rate.

Returns: The video timecode in milliseconds.

tsfn_toUnixTimestamp

Database Type Programmability

SQL Server Function

Oracle Function

Converts a date to a UNIX timestamp integer.

tsfn_toUnixTmestamp(datetime)

datetime: can be datetime or date

Returns: Unix timestamp integer

tsp_update_md5

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Used to update the MD5 (checksum) key for import and download to/from the Xinet File Broker.

tsp_update_md5(record_id, rend_id, MD5_key)

 Telescope Database Internals Guide

 Page 156 of 162 2/12/19

record_id: The record ID of the asset.

rend_id: The rendition ID of the asset.

MD5_key: The MD5 checksum hash key.

Returns: integer. (return code?)

tsp_vm3_repairinfo

Database Type Programmability

SQL Server Procedure

Oracle Procedure

Updates the duration and frame rate in the vl_info table for a video asset. It also sets the tape offset value to 0

for the same asset record.

tsp_vm3_repairinfo(pRecordID, pDuration, pFrameRate)

pRecordID: The record ID of the video asset being updated.

pDuration: The new value for duration.

pFrameRate: The new value for the frame rate.

Returns: N/A

Functional Rules

tsfr_ApplyOfficeMetadata (Deprecated)

Deprecated

tsfr_ApplyXMPMetadata

Database Type Programmability

 Telescope Database Internals Guide

 Page 157 of 162 2/12/19

SQL Server Procedure

Oracle Function

Called by the Telescope conversion functional rules to apply metadata when a user downloads a file processed

by the XMP Conversion I-Piece. The file type is checked within this functional rule procedure against a list of

supported file types. (For details on how to update this list, see the XMP I-Piece and Conversion I-Piece Manual.)

tsfr_ApplyXMPMetadata(record_id, rend_id, final_file_type)

record_id: The record ID of the asset being downloaded.

rend_id: The rendition ID of the rendition being downloaded.

final_file_type: The final file format of the file being downloaded (this may be the original file type, or the

end result of a conversion string applied to the file when it is downloaded).Returns: The conversion string.

tsfr_ApplyPlayListMetadata

Database Type Programmability

SQL Server Procedure

Oracle Function

Called by the Telescope conversion functional rules to apply metadata when a user downloads a playlist asset.

tsfr_ApplyPlayListMetadata(record_id, rend_id, final_file_type)

record_id: The record ID of the asset being downloaded.

rend_id: Deprecated.

final_file_type: DEPRECATED.

Returns: The conversion string.

 Telescope Database Internals Guide

 Page 158 of 162 2/12/19

tsfr_GetIndesignConnectInfo

Database Type Programmability

SQL Server Procedure

Oracle Function

Called by the Telescope conversion functional rules to apply metadata when a user downloads an Adobe

InDesign asset.

Triggers

trig_editorial_approval_update

A trigger on the EDITORIAL table that inserts a row into the SEARCH_INDEX_ACTIONS table to re-index the asset

when the APPROVPEND flag is updated from Y to null.

tstrg_access_history_ins

A trigger on the access_history table (on insert) that calls tsp_createplaylistasset, tsp_createvideoasset, or

tsp_createpreviewonlyasset.

tstrg_cov_info_ins

A trigger on the cov_info table (on insert) that sets the dflt_display to 'THUMBS' for PowerPoint documents

tstrg_embedded_metadata_del

A trigger on the embedded_metadata table (after delete) that calls the tsp_deleteMetadataSmartCatalog for each

row in the table.

 Telescope Database Internals Guide

 Page 159 of 162 2/12/19

tstrg_embedded_metadata_ins

A trigger on the embedded_metadatatable (after insert) that that calls the tsp_createMetadataSmartCatalog for

each row in the table.

tstrg_extra_columns_ins

A trigger on the extra_columns table (after insert) that sets the distribute_yn flag to `Y`. When the Distribution

Broker is configured to distribute the metadata for an asset in a MIMIX file, or when using any metadata field for

file or directory name substitution, the Distribution Broker will only pickup fields with distribute_yn set to ‘Y’. If a

field does not have that flag set, that field will not get distributed.

tstrg_vl_info_insupd

A trigger on the vl_info table(after insert or update) that recalculates and sets the in_smpte in the vl_clips, vl_text,

and vl_thumbnails tables. It also updates last_update in the vl_info table to the current system date.

tstrg_vl_playlist_url_ai

A trigger on the vl_info table that adds the needed data for MassStore Broker when a new playlist is created.

TSTRG_USER_NAME_HISTORY

A trigger on the USER_NAME_HISTORY table that records user history: insertion and updates to users.

Audit Table Triggers

Each of the following tables has a trigger that updates the AUDIT table with the action taken.

Table Name Trigger Name

announcement_list_groups announcement_list_groups_ctts

announcement_list_moderators announcement_list_moderators_ctts

announcement_lists announcement_lists_ctts

announcements announcements_ctts

 Telescope Database Internals Guide

 Page 160 of 162 2/12/19

checkouts checkouts_ctts

cov_majortypes cov_majortypes_ctts

cov_sectiontypes cov_sectiontypes_ctts

db_settings db_settings_ctts

db_integrity db_integrity_ctts

dl_methods dl_methods_ctts

ed_versions ed_versions_ctts

extendedview_fields extendedview_fields_ctts

extra_columns extra_columns_ctts

fm_policies fm_policies_ctts

fn_messages fn_messages_ctts

fn_rules fn_rules_ctts

fn_rulesets fn_rulesets_ctts

fn_watermarks fn_watermarks_ctts

form_search form_search_ctts

form_search_fields form_search_fields_ctts

form_search_values form_search_values_ctts

hier_items hier_items_ctts

hier_levels hier_levels_ctts

hierarchies hierarchies_ctts

iconic_fields iconic_fields _ctts

 Telescope Database Internals Guide

 Page 161 of 162 2/12/19

jobs jobs_ctts

m_actions m_actions_ctts

m_attachments m_attachments_ctts

mmx_sync mmx_sync_ctts

named_conv named_conv_ctts

paraview_fields paraview_fields_ctts

popups popups_ctts

renditions renditions_ctts

ses_pools ses_pools_ctts

share_mappings share_mappings_ctts

textview_fields textview_fields_ctts

type_codes type_codes_ctts

users users_ctts

welcome_iconic_levels welcome_iconic_levels_ctts

welcome_iconic_searches welcome_iconic_searches_ctts

welcome_icons welcome_icons_ctts

welcome_pages welcome_pages_ctts

ws_archive ws_archive_ctts

ws_decisions ws_decisions_ctts

ws_j_notifications ws_j_notifications_ctts

ws_j_users ws_j_users_ctts

 Telescope Database Internals Guide

 Page 162 of 162 2/12/19

ws_junctions ws_junctions_ctts

ws_rm_notifications ws_rm_notifications_ctts

ws_routemaps ws_routemaps_ctts

ws_s_notifications ws_s_notifications_ctts

ws_sj_notifications ws_sj_notifications_ctts

ws_sj_users ws_sj_users_ctts

ws_st_users ws_st_users_ctts

zoom_info zoom_info_ctts

Views

tsvw_doc_renditions

A view on the editorial and doc_renditions tables defined as:

select e.record_id, count(d.record_id) as rend_count from editorial e left join
doc_renditions d on e.record_id = d.record_id group by e.record_id

tsvw_embedded_metadata

A view on the embedded_metadata table defined as:

select record_id, ('<table><tr><td style="width:400px;font-weight:bold;text-
align:right;padding-right:20px">' + tag + '</td><td>' + value +
'</td></tr></table>') as tag_value from embedded_metadata

	Telescope Database Internals Guide
	Version 9.4.0.17
	Overview
	Triggers, Stored Procedures, and Functions
	Database Tables
	Metadata Tables
	CASCADE_FIELDS
	COLUMN_DISPLAY
	EXTRA_COLUMNS
	Adding External Tables
	EXTRA _COLUMNS Fields

	EXTRA_POPUPS (Deprecated)
	ICONIC_FIELDS
	POPUPS
	POPUPS_LANG

	Asset Data Tables
	ACCESS_HISTORY
	CHECKOUTS
	COV_FONTS
	COV_GEOMETRY
	COV_INFO
	COV_MAJORTYPES
	COV_PAGES
	COV_SECTIONS
	COV_SECTIONTYPES
	DOC_FILE_INFO
	DOC_LINKAGES
	DOC_RENDITIONS
	ED_VERSIONS
	EDITORIAL
	EDITORIAL SELECTION
	EMBEDDED_METADATA
	FT_CONTENTS
	IANNOTATION
	INOTES
	THUMBNAILS
	VIEWEX
	VL_ANNOTATIONS
	VL_ANNOTATIONSETS
	VL_CLIPS
	VL_INFO
	VL_PLAYLISTS
	VL_PROXIES
	VL_TEXT
	VL_THUMBNAILS
	VL_TRACKS
	Track ID Values

	ZOOM_INFO

	Functional Rules Tables
	FN_MESSAGES
	FN_RULES
	FN_RULESETS
	FN_WATERMARKS

	Order Entry Tables
	EXT_ADDRESSES
	OE_ARCHIVE
	OE_ASSETMETADATA
	OE_ASSETOUTVALS
	OE_ASSETS
	OE_ASSETSTATVALS
	OE_FULFILLERS
	OE_METADATA
	OE_ORDERS
	OE_OUTVALS
	OE_STATVALS

	User Tables
	ANNOUNCEMENT_LIST_GROUPS
	ANNOUNCEMENT_LIST_MODERATORS
	ANNOUNCEMENT_LISTS
	ANNOUNCEMENTS
	DOWNLOAD_QUEUE
	EXTENDEDVIEW_FIELDS
	PARAVIEW_FIELDS
	QL_ASSETS
	QL_RECIPIENTS
	QL_TICKETS
	TEXTVIEW_FIELDS
	TNAILVIEW_FIELDS
	UPLOAD_QUEUE (Deprecated)
	USERS
	VIEW_ACTIONS
	VIEW_CATALOGS
	VIEW_CONV
	VIEW_FIELDS
	VIEW_FM
	VIEW_FORMS
	VIEW_GROUPS
	VIEW_HIER
	VIEW_METHODS
	VIEW_REND
	VIEW_RM
	VIEW_SOURCES
	VIEW_TRACKS
	VIEW_VIDEOMGR
	VIEW_VL_ANNOTATIONSETS
	VIEW_WELCOMEPAGES

	Collection Tables
	M_LB_ITEMS
	M_LIGHTBOXES

	Welcome Pages Tables
	WELCOME_ICONIC_LEVELS
	WELCOME_ICONIC_SEARCHES
	WELCOME_ICONS
	WELCOME_PAGES

	Messaging Tables
	M_ACTIONS
	M_ATTACHMENTS
	M_MESSAGES
	M_MSGACTIONS
	M_MSGTEXT
	M_RECIPIENTS
	M_TEMPLATE

	Orchestration Services Tables
	WS_ARCHIVE
	WS_DECISIONS
	WS_J_NOTIFICATIONS
	WS_J_USERS
	WS_JUNCTIONS
	WS_RM_NOTIFICATIONS
	WS_ROUTEMAPS
	WS_S_NOTIFICATIONS
	WS_SERVICEASSETS
	WS_SERVICEDECISIONS
	WS_SERVICEJUNCTIONS
	WS_SERVICES
	WS_SERVICETRACE
	WS_SJ_NOTIFICATIONS
	WS_SJ_USERS
	WS_ST_USERS

	Search Tables
	FORM_SEARCH
	FORM_SEARCH_FIELDS
	FORM_SEARCH_VALUES
	HIER_ITEMS (Deprecated)
	HIER_LEVELS (Tree Search)
	HIERARCHIES
	SAVED_SEARCHES
	SEARCH_INDEX_ACTIONS
	SEARCH_INDEX_LOG

	MIMiX (Synchronization Broker) Tables
	MMX_SYNC

	Distribution Broker Tables
	DISTB_AUDIT_TRAIL
	DISTB_DATA_RECOVERY

	Miscellaneous Brokers
	Interoperability Broker Tables
	INTEROP_EVENT_QUEUE

	Rest Broker Tables (For Future Use)
	Queue Broker and Connection Broker Tables (For Future Use)

	System Tables
	AUDIT
	DB_INTEGRITY (Deprecated)
	DB_SETTINGS
	Sample DB_SETTINGS Keywords

	DEBUG_LOG
	DL_METHODS
	ERROR_LOG (Deprecated)
	FM_POLICIES
	I_PIECES (Deprecated)
	JOBS
	LANGUAGE_LOCAL
	NAMED_CONV
	NPS_DBCHNG_LOG (Internal Use)
	RENDITIONS
	SEQUENCES
	SES_POOLS
	SHARE_MAPPINGS
	SORTS (Deprecated)
	TS_STATISTICS
	TYPE_CODES

	Telescope Query Generator
	Appendix: Programmability
	Functions and Stored Procedures
	tsp_acquirecheckoutlock
	tsp_acquirecheckoutlock_impl
	tsp_add_setting
	tsfn_charindexr
	tsp_createMetadataField
	tsp_createMetadataSmartCatalog
	tsp_createNRtable
	tsp_createplaylistasset
	tsp_createplaylistfromclip
	tsp_createpreviewonlyasset
	tsp_createTableExtendEditorial (Internal Use)
	tsp_createvideoasset
	tsp_delete_record
	tsp_deleteMetadataSmartCatalog
	tsp_delete_version
	tsp_FindAllChildren
	tsp_FindAllParents
	tsp_FindChildAsset
	tsfn_getcontainers
	tsp_getfieldvalue
	tsp_getfiletypes
	tsfn_getfiletypes
	tsp_getMimix
	getnegativeExtraColumnsID (Internal Use)
	tsp_getnextid_impl
	tsfn_getpopups
	tsp_getpopups
	tsp_getplaylistassetname
	tsp_getsetting
	tsp_getvideoassetdescriptor
	tsp_ins_debug_log
	tsp_ins_error_log (Deprecated)
	tsp_ipflip_getimportqueue
	tsfn_jsonencode (Internal Use)
	tsfn_MsecToSmpte
	tsp_newdocument
	tsp_parse_str
	tsp_popularFeed, tsfn_popularFeed
	tsp_recentFeed, tsfn_recentFeed
	tsp_setupLanguages
	tsfn_SmpteToMsec
	tsfn_toUnixTimestamp
	tsp_update_md5
	tsp_vm3_repairinfo

	Functional Rules
	tsfr_ApplyOfficeMetadata (Deprecated)
	tsfr_ApplyXMPMetadata
	tsfr_ApplyPlayListMetadata
	tsfr_GetIndesignConnectInfo

	Triggers
	trig_editorial_approval_update
	tstrg_access_history_ins
	tstrg_cov_info_ins
	tstrg_embedded_metadata_del
	tstrg_embedded_metadata_ins
	tstrg_extra_columns_ins
	tstrg_vl_info_insupd
	tstrg_vl_playlist_url_ai
	TSTRG_USER_NAME_HISTORY
	Audit Table Triggers

	Views
	tsvw_doc_renditions
	tsvw_embedded_metadata

